微信扫码
添加专属顾问
我要投稿
文章的出发点:LLMs通常被训练为通用工具,但在实际应用中,它们往往需要针对特定用户或任务进行调整。现有的方法如sft或rl,需要大量的数据集,这对新任务来说成本过高。本文通过少量用户提供的监督数据来快速定制和对齐大型语言模型,以满足特定用户或任务的需求。
文章标题:Show, Don’t Tell: Aligning Language Models with Demonstrated Feedback
https://arxiv.org/html/2406.00888v1
https://github.com/SALT-NLP/demonstrated-feedback
循环3,4,5,伪代码如下图:
DITTO 性能相对较高的原因之一是它通过生成比较使用的数据远多于 SFT。另一个是,在某些情况下,online imitation learning 比 SFT形式的 demonstrator 表现得更好。
迭代次数1->4,逐渐变优;增加negative sample,2->10逐渐变优;增加演示样本数量,逐渐边优,但是收益越来越低。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-12
基于智能体的自适应资损防控体系 - 淘工厂实践(二)
2025-09-12
运维老王:创业第十年,我用Elevo找回内心翻腾的梦想
2025-09-12
大模型可观测1-5-10:发现、定位、恢复的三层能力建设
2025-09-12
Qwen3-Next:用混合注意力和高稀疏 MoE 把训练与推理成本打下来
2025-09-12
阿里推出夸克医疗大模型:医考70%高分背后,RAG为何是“压舱石”?
2025-09-12
GPT-4o-mini 调用参数终极优化手册
2025-09-12
刚刚,ChatGPT支持MCP了!一句Prompt即可全自动化
2025-09-11
阿里云,这次杀疯了,断档第一
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-06-15
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08
2025-09-07