微信扫码
添加专属顾问
我要投稿
产品功能及特点
多语言支持:GOT-OCR2.0主要支持中文和英文字符识别,并能够通过进一步的微调扩展到更多语言。这种灵活性使其适用于国际化应用,满足不同用户的需求。
场景文本识别:该系统能够处理自然场景中的文本识别任务,例如街道标志、广告牌上的文字等。这一功能使得GOT-OCR2.0在各种实际应用中表现出色。
文档OCR:GOT-OCR2.0能够处理文档中完整页面的文字识别,无论是纯文本文档,还是含有表格、公式等复杂内容的文档。这一功能极大地方便了文档数字化和信息管理。
格式化文本OCR:该系统支持将光学文档中的文本直接转换为Markdown、LaTeX等格式,保持复杂文档的原始排版和格式。这使得后续编辑和排版工作更加高效。
动态分辨率处理:GOT-OCR2.0采用动态分辨率技术,支持对超高分辨率图像(如大幅海报、拼接PDF页面)进行OCR处理,确保在图像过大时仍能保持较高的识别准确性。
多页OCR:该系统能够批量处理多页文档,例如长篇PDF文件或包含多张图片的OCR任务,显著提升了处理效率。这对于需要大量文档处理的用户尤为重要。公式、表格与图表识别除了基本文本识别,GOT-OCR2.0还能够识别和处理文档中的数学公式、化学分子式、表格及图表等复杂结构,并将其转换为可编辑格式(如LaTeX或Python字典格式),满足更专业的需求。
格式化输出:该系统支持生成多种格式化输出,包括Markdown、TikZ、SMILES、LaTeX等,以结构化方式输出识别到的字符,例如表格、数学公式和分子结构等,使得信息传递更加清晰。
性能与架构:GOT-OCR2.0采用了集成的vision encoder和decoder设计,能够同时处理多种类型的OCR输入,从而极大提高信息传递效率。其模型大小仅为1.43GB,相较于其他AI模型而言较小,但性能却非常强大,特别适合需要处理高复杂度OCR任务的用户。该模型还引入了local attention机制,有效解决了全局注意力机制在高分辨率图像中的内存消耗问题。
识别效果展示
截屏文本识别/文档识别/乐谱识别/图表识别
OCR2.0评测
总结
GOT-OCR2.0作为AI 2.0时代的重要产品,通过端到端设计、一体化架构和对多场景复杂内容的识别能力,为用户提供了精准、高效的OCR解决方案。无论是在文档数字化、场景文本识别还是复杂数据处理方面,它都展现出卓越的性能,是开发者和研究人员不可或缺的工具。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-09
Virustotal对OpenClaw恶意技能(Skills)的跟踪分析
2026-02-09
ollama v0.15.6发布:上下文限制修复、自动模型下载、Claude环境变量优化、Droid与Qwen全面更新详解
2026-02-09
【开源】港大开源“纳米级OpenClaw”:超轻量AI助手,仅4000行代码复刻OpenClaw核心战力!
2026-02-06
Qwen3-Coder-Next 上线模力方舟:仅 3B 激活参数,媲美主流大模型的 Agent 编码能力
2026-02-06
给自己搭一个 AI 搭档:OpenClaw 安装使用全记录
2026-02-06
Qwen3-TTS:2026年最强开源文本转语音模型完全指南
2026-02-06
OpenClaw 爆火之后,我们看到了这些创业信号
2026-02-05
从Clawdbot到OpenClaw:爆款本地AI Agent的产品逻辑与争议
2025-11-19
2026-01-27
2025-12-22
2026-01-12
2026-01-29
2025-11-17
2025-12-10
2026-01-28
2025-12-23
2026-01-06
2026-02-05
2026-01-28
2026-01-26
2026-01-21
2026-01-21
2026-01-20
2026-01-16
2026-01-02