微信扫码
添加专属顾问
我要投稿
RAG技术如何抵御新模型挑战,持续在AI领域占有一席之地。 核心内容: 1. RAG技术的初衷与目标:结合参数化和非参数化记忆 2. RAG如何解决生成式语言模型的固有缺陷 3. 尽管新模型不断涌现,RAG在人工智能领域的必要性依然存在
每隔几个月,人工智能领域就会经历类似的模式。一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。Meta 最近的突破再次引发了这场讨论——Llama 4 Scout 惊人的 1000 万(理论上)token 上下文窗口代表着一次真正的飞跃。
RAG 的初衷
为什么我们仍然需要 RAG(并且永远需要)
警惕错误的二分法
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21