微信扫码
添加专属顾问
我要投稿
RAG技术如何抵御新模型挑战,持续在AI领域占有一席之地。 核心内容: 1. RAG技术的初衷与目标:结合参数化和非参数化记忆 2. RAG如何解决生成式语言模型的固有缺陷 3. 尽管新模型不断涌现,RAG在人工智能领域的必要性依然存在
每隔几个月,人工智能领域就会经历类似的模式。一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。Meta 最近的突破再次引发了这场讨论——Llama 4 Scout 惊人的 1000 万(理论上)token 上下文窗口代表着一次真正的飞跃。
RAG 的初衷
为什么我们仍然需要 RAG(并且永远需要)
警惕错误的二分法
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
涌现观点|RAG评估的"不可能三角":当独角兽公司因AI评估失误损失10亿美元时,我们才意识到这个被忽视的技术死角
2025-08-29
RAG2.0进入“即插即用”时代!清华YAML+MCP让复杂RAG秒变“乐高”
2025-08-29
利用RAG构建智能问答平台实战经验分享
2025-08-29
RAG如七夕,鹊桥大工程:再看文档解析实际落地badcase
2025-08-29
基于智能体增强生成式检索(Agentic RAG)的流程知识提取技术研究
2025-08-29
RAG 为何能瞬间找到答案?向量数据库告诉你
2025-08-28
寻找RAG通往上下文工程之桥:生成式AI的双重基石重构
2025-08-28
万字长文详解优图RAG技术
2025-06-05
2025-06-06
2025-06-05
2025-06-05
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-06-05