微信扫码
添加专属顾问
我要投稿
复旦大学邱锡鹏团队提出Zero-RAG技术,通过精准识别和剪除冗余知识,实现检索延迟降低22%且效果不降反升。 核心内容: 1. 揭示LLM与RAG知识高度重叠导致的效率问题 2. Zero-RAG三大核心技术方案解析 3. 实验数据证明剪除30%知识库仍保持性能
结论:外部 corpus 与模型内部知识高度重叠,继续"全量检索"≈ 白花钱、拖延迟、降效果。
复旦大学邱锡鹏提出Zero-RAG。首先提出了"掌握度评分"这一指标,用以精准识别RAG知识库中的冗余知识并进行剪除。经过剪枝后,对于模型已"掌握"的问题,其回答将主要依赖模型自身的内部知识。
一句话:"零冗余"不是口号,是真能剪、真加速、真不掉点。
结果:138M 句维基 → prune 30% 后索引体积同比例缩小。
消融显示:拿掉 Router 后 EM 显著下降,证明多检索一次反而添乱。
训练数据三种配方:
统一损失让模型学会忽略无用片段,靠内部知识作答。
经此微调,即使在 prune 后 corpus 里偶尔捞出无关句,模型也能"视而不见"。
❝句子:"Queen Victoria became Empress of India in 1876."
生成的 4 个 QA 全被 Llama3-70B 裸机答对 ⇒ Mastery-Score=1 ⇒ 直接剪除。
这些"教科书级别"的常识,就是 Zero-RAG 眼中该被"零冗余"的靶子。
Zero-RAG: Towards Retrieval-Augmented Generation with Zero
Redundant Knowledge
https://arxiv.org/pdf/2511.00505
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-10-11
2025-10-04
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30