微信扫码
添加专属顾问
 
                        我要投稿
老牛同学在之前的介绍大模型 Prompt 提示词的文章中(高效编写大模型 Prompt 提示词,解锁 AI 无限创意潜能),曾把大模型比作成一位无所不能无所不知且不知疲惫的“大师”。我们在日常工作、学习中等一些通用知识方面的问题,通常情况下,我们均可通过 Prompt 提示词就能从“大师”那里得到期望的结果。
但是,在某些垂直场景的特定任务(包括:个性化服务、内部私有数据等)中,这位“大师”可能就不一定能胜任了:
这个时候,我们可以通过标记好的结构化数据,让“大师”进一步学习(即:微调),通过调整“大师”的知识(即:调整大模型参数),达到处理特定任务的能力。
根据我们需要调整的大模型的参数量,微调技术大致可以分为 2 种:
LoRA(Low-Rank Adaptation)是一种高效的大模型PEFT微调技术,它是通过在预训练模型的关键层(如全连接层和自注意力层)之间添加低秩矩阵来完成微调。这些低秩矩阵的引入使得模型能够适应新的任务,而无需改变原有的大量参数。由于低秩矩阵的参数数量远小于原有层的参数数量,这就大大减少了需要训练的参数总数。
LoRA的优势在于,即使在资源有限的情况下,也可以有效地对大型预训练模型进行微调,使其适应各种下游任务,如文本分类、命名实体识别等。此外,由于 LoRA 的微调通常只需要较少的数据,这也使得它成为小数据集场景下的一个有力工具。
老牛同学将通过本教程,基于Qwen2-0.5B开源的预训练大模型,和大家一起进行一次大模型文本分类能力的微调。在 AI 蓬勃发展的今天,老牛同学期望能通过本教程,与大家一起在我们的 AI 知识库里新增储备微调知识,逐步做到肚里有货,从容不迫。
完成一次完整的大模型微调,大致需要以下几个步骤:
首先,我们需要通过Miniconda安装 Python 依赖库:
# 切换环境conda activate PY3.12.2# 安装依赖库pip install transformers datasets peft accelerate modelscope swanlab
如果我们还没有安装好Miniconda包管理工具,请先移步此文完成大模型基础环境配置:大模型应用研发基础环境配置(Miniconda、Python、Jupyter Lab、Ollama 等)
以上 6 个库的主要用途简单介绍:
ModelScope 上有很多公开免费的数据集供我们使用:datasets
本教程我们使用的是一个开放性问题进行分类的数据集:zh_cls_fudan-news
git lfs installgit clone https://www.modelscope.cn/datasets/swift/zh_cls_fudan-news.git
下载完成之后,我们会看到 2 个后缀为.jsonl的文件:
zh_cls_fudan-news├── README.md├── dataset_infos.json├── test.jsonl└── train.jsonl
.jsonl文件一般存储的是多行文本,每一行文本是一个 JSON 格式内容,即是多行 JSON 格式内容组合的文件。
train.jsonl是训练的输入文件,而test.jsonl则是训练的验证文件。他们每行 JSON 格式内容都包含text、category和output共 3 个属性,分代表模型输入、可选的分类列表和最终模型输出的分类。
我们对大模型微调的目标,就是希望微调后的大模型能够根据text和category组成的提示词,输出正确的output分类。
本教程中,老牛同学使用的是Qwen2-0.5B模型,我们把大模型下载到本地(目录:Qwen2-0.5B):
git lfs installgit clone https://www.modelscope.cn/qwen/Qwen2-0.5B.git
如果 Git 克隆失败中断,可以继续克隆下载:
cd Qwen2-0.5Bgit lfs pull
大模型微调包括:包括加载大模型、数据集格式化处理、LoRA 参数准备等。最后,微调过程我们通过SwanLab可视化界面监控整个微调过程。
我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。如果是第一次使用 SwanLab,则需要注册 SwanLab 账号:https://swanlab.cn,注册成功之后,在用户设置页面复制API Key,在训练开始时需要用到。
为了便于我们查看我们微调的数据,我们还需要创建一个项目(项目名称:Qwen2-FineTuning):
由于微调涉及到好几步,老牛同学强烈建议大家使用Jupyter Lab工具进行代码调试和验证,它可以把整个代码分成多个区块,单个区块可以多次执行。若还没有配置Jupyter Lab工具,建议先移步此文完成大模型基础环境配置:大模型应用研发基础环境配置(Miniconda、Python、Jupyter Lab、Ollama 等)
因为涉及到不同的代码片段,老牛同学直接粘贴完整代码,通过代码注释和代码后面进行说明(文件名:Qwen2-0.5B-train.py,完整的代码和数据,老牛同学在评论区提供仓库地址):
# Qwen2-0.5B-train.pyimport jsonimport pandas as pdimport torchfrom datasets import Datasetfrom modelscope import AutoTokenizerfrom swanlab.integration.huggingface import SwanLabCallbackfrom peft import LoraConfig, TaskType, get_peft_modelfrom transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seqimport osimport swanlab# 权重根目录BASE_DIR = 'D:\ModelSpace\Qwen2'# 设备名称device = 'cuda' if torch.cuda.is_available() else 'cpu'# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 数据集处理函数,包括:训练数据集和测试数据集def dataset_jsonl_transfer(origin_path, new_path):"""将原始数据集转换为大模型微调所需数据格式的新数据集"""messages = []# 读取原JSONL文件with open(origin_path, "r", encoding="utf-8") as file:for line in file:# 解析每一行原始数据(每一行均是一个JSON格式)data = json.loads(line)text = data["text"]catagory = data["category"]output = data["output"]message = {"input": f"文本:{text},分类选项列表:{catagory}","output": output,}messages.append(message)# 保存处理后的JSONL文件,每行也是一个JSON格式with open(new_path, "w", encoding="utf-8") as file:for message in messages:file.write(json.dumps(message, ensure_ascii=False) + "\n")# 在使用数据集训练大模型之前,对每行数据进行预处理def process_func(example):"""将数据集进行预处理"""MAX_LENGTH = 384input_ids, attention_mask, labels = [], [], []instruction = tokenizer(f"<|im_start|>system\n你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项列表,请输出文本内容的正确分类<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False)# add_special_tokens 不在开头加 special_tokensresponse = tokenizer(f"{example['output']}", add_special_tokens=False)input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]# 因为eos token咱们也是要关注的所以 补充为1labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]if len(input_ids) > MAX_LENGTH:# 做一个截断input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}# 加载预训练模型和分词器model_dir = os.path.join(BASE_DIR, 'Qwen2-0.5B')tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_dir, device_map=device, torch_dtype=torch.bfloat16)model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法# 加载、处理数据集和测试集train_dataset_path = os.path.join(BASE_DIR, 'zh_cls_fudan-news', 'train.jsonl')test_dataset_path = os.path.join(BASE_DIR, 'zh_cls_fudan-news', 'test.jsonl')train_jsonl_new_path = os.path.join(BASE_DIR, 'train.jsonl')test_jsonl_new_path = os.path.join(BASE_DIR, 'test.jsonl')if not os.path.exists(train_jsonl_new_path):dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path)if not os.path.exists(test_jsonl_new_path):dataset_jsonl_transfer(test_dataset_path, test_jsonl_new_path)# 得到微调数据集train_df = pd.read_json(train_jsonl_new_path, lines=True)train_ds = Dataset.from_pandas(train_df)train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names)# 创建LoRA配置config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,# 训练模式r=8,# Lora 秩lora_alpha=32,# Lora alaph,具体作用参见 Lora 原理lora_dropout=0.1,# Dropout 比例)# 将LoRA应用于模型model = get_peft_model(model, config)# 创建微调参数args = TrainingArguments(output_dir=os.path.join(BASE_DIR, 'output', 'Qwen2-0.5B'),per_device_train_batch_size=4,gradient_accumulation_steps=4,logging_steps=10,num_train_epochs=2,save_steps=100,learning_rate=1e-4,save_on_each_node=True,gradient_checkpointing=True,report_to="none",)# SwanLab微调过程回调数据swanlab_callback = SwanLabCallback(project="Qwen2-FineTuning", experiment_name="Qwen2-0.5B")trainer = Trainer(model=model,args=args,train_dataset=train_dataset,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),callbacks=[swanlab_callback],)# 开始微调trainer.train()# 模型结果结果评估def predict(messages, model, tokenizer):text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([text], return_tensors="pt").to(device)generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 模型评估:获取测试集的前10条测试数据test_df = pd.read_json(test_jsonl_new_path, lines=True)[:10]test_text_list = []for index, row in test_df.iterrows():instruction = row['你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项列表,请输出文本内容的正确分类']input_value = row['input']messages = [{"role": "system", "content": f"{instruction}"},{"role": "user", "content": f"{input_value}"}]response = predict(messages, model, tokenizer)messages.append({"role": "assistant", "content": f"{response}"})result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}"test_text_list.append(swanlab.Text(result_text, caption=response))swanlab.log({"Prediction": test_text_list})swanlab.finish()
以上就是大模型微调的全部代码,微调的总体流程如下:
trust_remote_code=True代表从本地磁盘加载模型权重output_dir="./output/Qwen2-0.5B"代表微调之后的权重文件目录),并设置SwanLab回调函数trainer.train()从原始数据集映射成大模型数据集进度、速度和耗时(共 4000 条数据):
我们启动模型微调后,SwanLab 需要我们输入API Key,输入即可。
我们可以在Jupyter Lab中直接开启看板,非常方便的查看微调情况。
微调完成,可以看到在测试样例评估上,微调后Qwen2大模型能够给出准确的文本分类:
至此,我们已经完成了Qwen2-0.5B大模型的微调工作,接下来就可以使用微调后模型完成特定任务了(文本分类)!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
 
            2025-08-07
2025-08-25
2025-10-12
2025-08-23
2025-08-11
2025-09-07
2025-10-14
2025-09-04
2025-09-09
2025-08-18