微信扫码
添加专属顾问
我要投稿
from datasets import load_dataset# 下载并加载 GLUE 数据集的 MRPC 任务dataset = load_dataset('glue', 'mrpc')# 打印数据集的基本信息print(dataset)
from datasets import DatasetBuilder, BuilderConfigclass CustomDatasetBuilder(DatasetBuilder):BUILDER_CONFIGS = [BuilderConfig(name="custom_config", description="A custom dataset configuration")]def _info(self):return DatasetInfo(description="Custom dataset",features=Features({"text": Value(dtype="string"),"label": ClassLabel(names=["negative", "positive"])}))def _split_generators(self, dl_manager):# 实现数据下载和划分的逻辑passdef _generate_examples(self, filepath):# 实现数据生成的逻辑pass
from datasets import DatasetBuilderclass MyDatasetBuilder(DatasetBuilder):def _split_generators(self, dl_manager):# 下载数据集并返回数据划分return [SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})]def _generate_examples(self, filepath):# 从文件中读取数据并生成示例with open(filepath, "r") as file:for id_, line in enumerate(file):yield id_, {"text": line.strip(), "label": 1} # 示例标签
dataset = load_dataset('glue', 'mrpc', split='train') # 加载训练集from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)# 使用 map 方法应用预处理函数processed_dataset = dataset.map(preprocess_function, batched=True)# 打印处理后的数据集样本print(processed_dataset)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Agent 越用越聪明?AgentScope Java 在线训练插件来了!
2026-02-03
OpenClaw之后,我们离能规模化落地的Agent还差什么?
2026-01-30
Oxygen 9N-LLM生成式推荐训练框架
2026-01-29
自然·通讯:如何挖掘复杂系统中的三元交互
2026-01-29
微调已死?LoRA革新
2026-01-19
1GB 显存即可部署:腾讯 HY-MT1.5 的模型蒸馏与量化策略解析
2026-01-18
【GitHub高星】AI Research Skills:一键赋予AI“博士级”科研能力,74项硬核技能库开源!
2026-01-10
前Mata GenAI研究员田渊栋的年终总结:关于未来AI的思考
2025-11-21
2025-12-04
2026-01-04
2026-01-02
2025-11-22
2025-11-20
2025-11-19
2026-01-01
2025-12-21
2025-11-23
2026-02-03
2026-01-02
2025-11-19
2025-09-25
2025-06-20
2025-06-17
2025-05-21
2025-05-17