微信扫码
添加专属顾问
 
                        我要投稿
from datasets import load_dataset# 下载并加载 GLUE 数据集的 MRPC 任务dataset = load_dataset('glue', 'mrpc')# 打印数据集的基本信息print(dataset)
from datasets import DatasetBuilder, BuilderConfigclass CustomDatasetBuilder(DatasetBuilder):BUILDER_CONFIGS = [BuilderConfig(name="custom_config", description="A custom dataset configuration")]def _info(self):return DatasetInfo(description="Custom dataset",features=Features({"text": Value(dtype="string"),"label": ClassLabel(names=["negative", "positive"])}))def _split_generators(self, dl_manager):# 实现数据下载和划分的逻辑passdef _generate_examples(self, filepath):# 实现数据生成的逻辑pass
from datasets import DatasetBuilderclass MyDatasetBuilder(DatasetBuilder):def _split_generators(self, dl_manager):# 下载数据集并返回数据划分return [SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})]def _generate_examples(self, filepath):# 从文件中读取数据并生成示例with open(filepath, "r") as file:for id_, line in enumerate(file):yield id_, {"text": line.strip(), "label": 1} # 示例标签
dataset = load_dataset('glue', 'mrpc', split='train')  # 加载训练集from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)# 使用 map 方法应用预处理函数processed_dataset = dataset.map(preprocess_function, batched=True)# 打印处理后的数据集样本print(processed_dataset)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
 
            2025-08-07
2025-08-25
2025-10-12
2025-08-23
2025-08-11
2025-09-07
2025-10-14
2025-09-04
2025-09-09
2025-08-18