微信扫码
添加专属顾问
我要投稿
根据以上分析,步骤如下:
1. 冻结预训练模型的权重: LoRA 不会修改预训练模型的原始权重,而是将它们冻结。
2. 注入秩分解矩阵: 在 Transformer 的每一层,LoRA 向原始权重矩阵 W 添加一个低秩矩阵更新 ΔW,其中 ΔW = BA。
- A 是一个降维矩阵,将输入特征映射到一个低维空间。
- B 是一个升维矩阵,将低维空间的特征映射回原始特征空间。
- A 和 B 的秩远小于 W 的秩。
3. 训练秩分解矩阵: 在微调过程中,只有 A 和 B 的参数会被训练,而原始权重矩阵 W 保持不变。
4. 合并权重矩阵: 在推理阶段,可以将 ΔW 与 W 合并,得到最终的权重矩阵 W' = W + ΔW。
优势:
更少的内存需求: LoRA 只需要存储和更新低秩矩阵 `A` 和 `B`,大大减少了GPU内存需求,使得在单个GPU上微调大型语言模型成为可能。
更快的训练速度: 由于需要更新的参数数量减少,LoRA 的训练速度比全参数微调更快。
更好的性能: LoRA 在许多任务上都取得了与全参数微调相当甚至更好的性能。
易于合并和切换: 不同的LoRA权重可以轻松地与基础模型合并或切换,方便实验和部署。
劣势:
并非所有模型都适用:LoRA 最适合 Transformer 架构的模型,对于其他类型的模型可能需要进行修改。
低秩假设的限制: LoRA 的性能依赖于低秩假设,如果目标任务需要对模型进行大幅度的修改,LoRA 的性能可能会受到限制。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Agent 越用越聪明?AgentScope Java 在线训练插件来了!
2026-02-03
OpenClaw之后,我们离能规模化落地的Agent还差什么?
2026-01-30
Oxygen 9N-LLM生成式推荐训练框架
2026-01-29
自然·通讯:如何挖掘复杂系统中的三元交互
2026-01-29
微调已死?LoRA革新
2026-01-19
1GB 显存即可部署:腾讯 HY-MT1.5 的模型蒸馏与量化策略解析
2026-01-18
【GitHub高星】AI Research Skills:一键赋予AI“博士级”科研能力,74项硬核技能库开源!
2026-01-10
前Mata GenAI研究员田渊栋的年终总结:关于未来AI的思考
2025-11-21
2025-12-04
2026-01-04
2026-01-02
2025-11-22
2025-11-20
2026-01-01
2025-11-19
2025-12-21
2025-11-23
2026-02-03
2026-01-02
2025-11-19
2025-09-25
2025-06-20
2025-06-17
2025-05-21
2025-05-17