微信扫码
添加专属顾问
我要投稿
自动化机器学习(AutoML)旨在减少人为干预,自动设计可靠的机器学习解决方案。传统的AutoML框架依赖于预定义的搜索空间和固定流程,缺乏适应性,难以应对多样化和动态的数据场景,导致在复杂设置下性能不佳。尽管基于大型语言模型(LLM)的Agent显示出自动化机器学习任务的潜力,但它们在生成多样化和高度优化的代码方面存在不足,通常生成低多样性和次优代码,即使经过多次迭代优化。
本文提出了SELA(Tree-Search Enhanced LLM Agents),一种创新的基于Agent的系统,结合了蒙特卡罗树搜索(MCTS)和LLM Agent以优化AutoML过程。SELA将管道配置表示为树结构,使Agent能够智能地进行实验,并迭代优化其策略,从而更有效地探索机器学习解决空间。通过这种反馈驱动的过程,SELA能够基于实验反馈发现最佳路径,提高解决方案的整体质量。
下图是SELA的工作流程与其他Agent式AutoML框架的对比。
下图是SELA的整体管道运作流程
搜索空间表示:
计划生成过程:
MCTS中的UCT-DP选择函数:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-05
普林斯顿大学RLAnything:AI学会一边学习一边给自己打分
2026-02-04
Agent 越用越聪明?AgentScope Java 在线训练插件来了!
2026-02-03
OpenClaw之后,我们离能规模化落地的Agent还差什么?
2026-01-30
Oxygen 9N-LLM生成式推荐训练框架
2026-01-29
自然·通讯:如何挖掘复杂系统中的三元交互
2026-01-29
微调已死?LoRA革新
2026-01-19
1GB 显存即可部署:腾讯 HY-MT1.5 的模型蒸馏与量化策略解析
2026-01-18
【GitHub高星】AI Research Skills:一键赋予AI“博士级”科研能力,74项硬核技能库开源!
2025-11-21
2025-12-04
2026-01-04
2026-01-02
2025-11-20
2025-11-22
2026-01-01
2025-11-19
2025-12-21
2025-11-23
2026-02-03
2026-01-02
2025-11-19
2025-09-25
2025-06-20
2025-06-17
2025-05-21
2025-05-17