微信扫码
添加专属顾问
我要投稿
轻量级微调利器LLaMA Factory,让有限算力也能高效训练大模型!核心内容: 1. LLaMA Factory的核心优势与适用场景 2. 从环境搭建到模型下载的完整实战流程 3. 内置ChatBot测试页面的快速验证方法
「交互类应用」的快速落地测试场景
git clone https://github.com/hiyouga/LLaMA-Factory.gitconda create -n llama_factory python=3.10conda activate llama_factorycd LLaMA-Factorypip install -r requirements.txtllamafactory-cli train -hmodelscope download --model llama/Meta-Llama-3-8B-Instruct --local_dir ./dirCUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat --model_name_or_path llama/Meta-Llama-3-8B-Instruct --template llama3{"prompt":"推荐Adventure, Animation, Children, Comedy, Fantasy类型的电影","response":"Toy Story (1995)"}CUDA_VISIBLE_DEVICES=0 llamafactory-cli train --stage sft --do_train --model_name_or_path llama/Meta-Llama-3-8B-Instruct --dataset movies_sft --dataset_dir ./data --template llama3 --finetuning_type lora --output_dir llama/SFT-Meta-Llama-3-8B-Instruct --overwrite_cache --overwrite_output_dir --cutoff_len 1024 --preprocessing_num_workers 16 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --gradient_accumulation_steps 8 --lr_scheduler_type cosine --logging_steps 50 --warmup_steps 20 --save_steps 100 --eval_steps 100 --learning_rate 5e-5 --num_train_epochs 5.0 --max_samples 1000 --val_size 0.1 --plot_loss --fp16CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat --model_name_or_path llama/Meta-Llama-3-8B-Instruct --finetuning_type lora --adapter_name_or_path llama/SFT-Meta-Llama-3-8B-Instruct --template llama3import osimport argparseimport shutilimport torchfrom transformers import AutoModelForCausalLM, AutoTokenizerfrom peft import PeftModeldef parse_args():parser = argparse.ArgumentParser("Merge LoRA adapter into base model")parser.add_argument("--output_lora", required=True, help="LoRA adapter 目录")parser.add_argument("--model_name", required=True, help="基座模型目录")parser.add_argument("--out_dir", default=None, help="合并后模型输出目录")parser.add_argument("--cpu", action="store_true", help="在 CPU 上合并")return parser.parse_args()def main():args = parse_args()lora_dir = os.path.abspath(args.output_lora)base_dir = os.path.abspath(args.model_name)out_dir = os.path.abspath(args.out_dir or lora_dir + "-merged")os.makedirs(out_dir, exist_ok=True)# 检查文件存在性for f, desc in [(lora_dir, "LoRA目录"), (base_dir, "基座目录")]:assert os.path.isdir(f), f"{desc}不存在: {f}"assert os.path.isfile(os.path.join(lora_dir, "adapter_config.json")), "缺少 adapter_config.json"assert os.path.isfile(os.path.join(base_dir, "config.json")), "基座目录缺少 config.json"# 设置设备与 dtypedevice_map = None if args.cpu else "auto"dtype = torch.float32 if args.cpu else (torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16)# 加载基座模型base = AutoModelForCausalLM.from_pretrained(base_dir, torch_dtype=dtype, device_map=device_map, trust_remote_code=True, local_files_only=True)# 加载LoRA并合并merged = PeftModel.from_pretrained(base, lora_dir, is_trainable=False).merge_and_unload()# 保存完整模型和 tokenizermerged.save_pretrained(out_dir, safe_serialization=True, max_shard_size="2GB")AutoTokenizer.from_pretrained(base_dir, trust_remote_code=True, local_files_only=True).save_pretrained(out_dir)# 尝试保存 generation_configif hasattr(base, "generation_config") and base.generation_config is not None:try: base.generation_config.save_pretrained(out_dir)except: pass# 拷贝可选额外文件for extra in ["chat_template.jinja"]:src = os.path.join(base_dir, extra)if os.path.isfile(src): shutil.copy2(src, os.path.join(out_dir, extra))if __name__ == "__main__":main()
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
Open联合创始人:AI大模型2025年度回顾
2025-12-14
我微调了一个LangChain专家模型,离Vibe Agent又近了一步
2025-12-11
左脚踩右脚:大模型的有趣且简单的微调方式“SHADOW-FT”
2025-12-11
大模型训练的高效内存解决方案:流水线感知的细粒度激活卸载,实现显存开销与吞吐性能的联合最优
2025-12-08
一杯咖啡成本搞定多模态微调:FC DevPod + Llama-Factory 极速实战
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-10-12
2025-10-21
2025-10-14
2025-09-24
2025-09-25
2025-11-05
2025-11-05
2025-11-21
2025-12-04
2025-11-22