微信扫码
添加专属顾问
我要投稿
在大模型时代,知识图谱作为一种结构化的知识表示方式,扮演着至关重要的角色。随着大模型在自然语言处理、图像识别和智能决策等领域的广泛应用,知识图谱与大模型的结合成为推动人工智能进步的重要方向。这种结合不仅提升了大模型的语义理解和推理能力,还增强了其在多模态数据处理、模型解释和持续学习等方面的表现。接下来,我们将探讨几种最为关键的结合点,展示知识图谱如何与大模型协同工作,推动前沿应用的发展。
知识图谱嵌入:将知识图谱中的实体和关系嵌入到向量空间中,然后将这些向量作为大模型的额外输入或用于对模型输出进行增强。这种方法使得大模型能够更好地理解文本中的实体及其关系。
2.推理与决策支持:
结合点:利用知识图谱中预定义的逻辑和关系,增强大模型的推理能力,使其在复杂问题上能够进行更有逻辑的推理和决策。
应用:医疗诊断、金融风险分析。
5.持续学习与知识更新:
结合点:通过知识图谱动态更新模型的知识库,使得大模型能够持续学习和适应最新的信息和知识。
应用:搜索引擎、智能助手。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-03
基于 LLM 抽取与 Neo4j,从会议纪要构建自更新知识图谱
2026-02-03
Claude Code 用户福音!一键生成红楼梦、海贼王、灵笼人物关系图谱
2026-01-27
在大学里“知识图谱”,真的有人用吗?
2026-01-22
CoDe-KG:利用大语言模型和句子复杂度建模的自动化知识图谱构建
2026-01-16
面向本体质量的评估指标与方法探析
2026-01-14
Context Graph2025年最具代表性论文与技术进展汇总
2026-01-13
下一个万亿AI赛道!上下文图谱,才是AI创业的真正机会
2026-01-13
Context Graph
2025-12-31
2025-12-01
2025-11-24
2025-12-05
2025-11-13
2025-12-08
2025-12-04
2025-11-14
2025-12-02
2025-11-20