微信扫码
添加专属顾问
我要投稿
今天给大家安利一个开源框架- muAgent v2.0:KG引擎驱动的创新Agent框架。
由LLM和EKG(Eventic Knowledge Graph,行业知识载体)驱动的全新Agent框架,协同利用MultiAgent、FunctionCall、CodeInterpreter等。通过基于画布的拖放和简单的文本编写,大语言模型可以辅助您在人工指导下执行各种复杂的 SOP。
它兼容市场上现有的框架,可以实现四大核心差异化技术功能:复杂推理、在线协作、人机交互、知识点播。该框架已在蚂蚁集团内多个复杂的 DevOps 场景中得到验证。
经过对市面上的框架的深入分析,发现大多数的 Agent 框架整体耦合度较高,其易用性和可扩展性较差。在预设场景中实现特定场景,但想要进行场景扩展却困难重重。
因此,我们构建了一个可扩展、易于使用的 Multi-Agent 框架,以支持 ChatBot 在获取知识库信息的同时,能够辅助完成日常办公、数据分析、开发运维等各种通用任务。
本项目的 Mutli-Agent 框架汲取兼容了多个框架的优秀设计,比如 metaGPT 中的消息池(message pool)、autogen 中的代理选择器(agent selector)等。
项目地址:https://github.com/codefuse-ai/CodeFuse-muAgent/tree/main
Multi-Agent 框架,包括以下内容:
在 Agent 层面,提供四种基本的 Agent 类型,对这些 Agent 进行 Role 的基础设定,可满足多种通用场景的交互和使用。所有的 Action 都由 Agent 执行。
BaseAgent:提供基础问答、工具使用、代码执行的功能,根据 Prompt 格式实现 输入 => 输出
ReactAgent:提供标准 React 的功能,根据问题实现当前任务
ExecutorAgent:对任务清单进行顺序执行,根据 User 或 上一个 Agent 编排的计划,完成相关任务 Agent 接受到任务清单(List[task]),对这个任务清单 Task 进行循环执行(中间也可添加 Feedback Agent 来进行任务重新优化),直到任务完成
SelectorAgent:提供选择 Agent 的功能,根据 User 或 上一个 Agent 的问题选择合适的 Agent 来进行回答.
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-03
向量检索快比LLM还贵?不支持S3的向量数据库,迟早要淘汰!
2025-09-02
知识图谱常用的8款可视化提效神器
2025-09-02
DoorDash如何利用知识图谱增强大模型提升搜索召回精度
2025-09-01
知识图谱在高级媒体搜索中的作用
2025-08-30
知识管理与 RAG 框架全景:从 LlamaIndex 到多框架集成
2025-08-28
知识图谱:让智能体理解世界的关键上下文
2025-08-28
RAG负责猜,Agent负责演,“本体工程”才是企业AI落地生根的关键
2025-08-28
使用Coze搭建你的知识图谱,GraphRAG原理及实战讲解(一)
2025-07-16
2025-06-17
2025-06-13
2025-06-17
2025-06-15
2025-08-26
2025-07-27
2025-07-14
2025-07-15
2025-08-28