微信扫码
添加专属顾问
我要投稿
文本分割器的基本工作原理:
定制文本分割器的两个主要轴向:
主要参数和功能:
def transformer_doc():# 加载待分割长文本 with open('sys_boss.txt',encoding='UTF-8') as f:state_of_the_union = f.read()text_splitter = RecursiveCharacterTextSplitter(chunk_size = 100,chunk_overlap= 20,length_function = len,add_start_index = True,)docs = text_splitter.create_documents([state_of_the_union])print(docs[0])print(docs[1])metadatas = [{"document": 1}, {"document": 2}]documents = text_splitter.create_documents([state_of_the_union, state_of_the_union], metadatas=metadatas)print(documents[0])
def spit_code():print([e.value for e in Language])html_text = """<!DOCTYPE html><html><head><title>?️? LangChain</title><style>body {font-family: Arial, sans-serif;}h1 {color: darkblue;}</style></head><body><div><h1>?️? LangChain</h1><p>⚡ Building applications with LLMs through composability ⚡</p></div><div>As an open source project in a rapidly developing field, we are extremely open to contributions.</div></body></html>"""html_splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=60, chunk_overlap=0)html_docs = html_splitter.create_documents([html_text])print(html_docs)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
LangChain如何使用通义千问的向量模型
2025-08-29
Claude code prompt原来这么写的,怪不得这么厉害
2025-08-27
从LangChain到LangGraph:AI智能体提示词工程的系统化学习
2025-08-25
Agent实战教程:LangGraph相关概念介绍以及快速入门
2025-08-23
企业级复杂任务智能体构建:解锁LangChain新品Deep Agents及其UI利器
2025-08-20
使用LLamaIndex Workflow来打造水墨风格图片生成工作流
2025-08-19
让 LangChain 知识图谱抽取更聪明:BAML 模糊解析助力升级
2025-08-17
Manus、LangChain一手经验:先别给Multi Agent判死刑,是你不会管理上下文
2025-07-14
2025-06-26
2025-07-14
2025-07-16
2025-06-16
2025-08-19
2025-06-26
2025-06-13
2025-06-16
2025-06-11
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08