微信扫码
添加专属顾问
我要投稿
ChatGPT 所取得的巨大成功,使得越来越多的开发者希望利用OpenAI 提供的API 或私有化模型开发基于大语言模型的应用程序。然而,即使大语言模型的调用相对简单,仍需要完成大量的定制开发工作,包括API 集成、交互逻辑、数据存储等。为了解决这个问题,从2022年开始,多家机构和个人陆续推出了大量开源项目,帮助大家快速创建基于大语言模型的端到端应用程序或流程,其中较为著名的是LangChain 框架。LangChain框架是一种利用大语言模型的能力开发各种下游应用的开源框架,旨在为各种大语言模型应用提供通用接口,简化大语言模型应用的开发难度。它可以实现数据感知和环境交互,即能够使语言模型与其他数据源连接起来,并允许语言模型与其环境进行交互。
使用LangChain 框架的核心目标是连接多种大语言模型(如ChatGPT、LLaMA 等)和外部资源(如Google、Wikipedia、Notion 及Wolfram 等),提供抽象组件和工具以在文本输入和输出之间进行接口处理。大语言模型和组件通过“链(Chain)”连接,使得开发人员可以快速开发原型系统和应用程序。LangChain 的主要价值体现在以下几个方面。
LangChain 提供了以下6 种标准化、可扩展的接口,并且可以外部集成:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
LangChain如何使用通义千问的向量模型
2025-08-29
Claude code prompt原来这么写的,怪不得这么厉害
2025-08-27
从LangChain到LangGraph:AI智能体提示词工程的系统化学习
2025-08-25
Agent实战教程:LangGraph相关概念介绍以及快速入门
2025-08-23
企业级复杂任务智能体构建:解锁LangChain新品Deep Agents及其UI利器
2025-08-20
使用LLamaIndex Workflow来打造水墨风格图片生成工作流
2025-08-19
让 LangChain 知识图谱抽取更聪明:BAML 模糊解析助力升级
2025-08-17
Manus、LangChain一手经验:先别给Multi Agent判死刑,是你不会管理上下文
2025-07-14
2025-06-26
2025-07-14
2025-07-16
2025-06-16
2025-08-19
2025-06-26
2025-06-13
2025-06-16
2025-06-11
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08