微信扫码
添加专属顾问
我要投稿
Langchain-core:提供基本支撑,支持并行处理、追踪、回调、批量、流式操作、同步等功能。
Langchain-community:整合第三方工具,如模型操作、提示词模板、文件解析、分块、向量化、embedding 等。
Langchain:提供链(Chains)和代理(Agents),用于处理复杂业务逻辑和与外部 API 交互。
2. LangChain Templates:提供一系列容易部署的参考架构,适用于各种任务。
3. LangServe:用于将 LangChain 链部署为 REST API 的库。
4. LangSmith:开发者平台,可提供调试、测试、评估和监控基于任何语言模型框架构建的链,并能无缝与 LangChain 集成。
以下样例展示了如何安装依赖、导入模块、进行 LCEL 语法操作以及引入输出解析器。
# 安装依赖 pip install langchain langchain-openaifrom langchain_openai import ChatOpenAI# 确认环境变量中已经配置OPENAI_API_KEYllm = ChatOpenAI()# 导入提示词模板from langchain_core.prompts import ChatPromptTemplateprompt = ChatPromptTemplate.from_messages([("system", "You are world class technical documentation writer."),("user", "{input}")])# LCEL语法操作chain = prompt | llmchain.invoke({"input": "how can langsmith help with testing?"})# 引入输出解析器from langchain_core.output_parsers import StrOutputParseroutput_parser = StrOutputParser()chain = prompt | llm | output_parserchain.invoke({"input": "how can langsmith help with testing?"})
LangChain 作为大模型应用的构建框架,通过解决诸多开发中的问题,为大模型应用的开发提供了有效解决方案。它帮助开发者在语言模型领域实现了许多复杂操作,让构建现代、高效、安全的语言模型应用变得更加轻松。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-31
Spring AI Alibaba/Dify/LangGraph/LangChain 一文讲清四大AI框架怎么选
2025-10-29
为什么我们选择 LangGraph 作为智能体系统的技术底座?
2025-10-27
Langchain 、 Manus 组了一个研讨会:Agent越智能,死得越快!
2025-10-23
LangChain V1.0 深度解析:手把手带你跑通全新智能体架构
2025-10-23
LangChain 与 LangGraph 双双发布 1.0:AI 智能体框架迎来里程碑时刻!
2025-10-19
AI 不再“乱跑”:LangChain × LangGraph 打造可控多阶段智能流程
2025-10-15
LangChain对话Manus创始人:顶级AI智能体上下文工程的“满分作业”首次公开
2025-10-09
Langchain回应OpenAI:为什么我们不做拖拉拽工作流
2025-09-13
2025-09-21
2025-10-19
2025-08-19
2025-08-17
2025-09-19
2025-09-12
2025-09-06
2025-08-03
2025-08-29
2025-10-29
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19