微信扫码
添加专属顾问
我要投稿
文档重新排序技术提升 RAG 性能),并有助于实现代理在大幅提高知识生产力方面的承诺。
白话说就是一种可以自动识别和提取各种文档(如扫描表格、PDF 文件、电子邮件等)中有价值的数据并将其转换为所需格式的技术。该技术也称为认知文档处理、智能文档识别或智能文档捕获。“ 通过在整个过程中保持上下文状态,代理可以处理复杂的多步骤工作流程,而不仅仅是简单的提取或匹配。这种方法使他们能够在协调不同系统组件的同时,构建有关他们正在处理的文档的深层背景。”
LlamaIndex
from llama_index.indices.managed.llama_cloud import LlamaCloudIndexfrom llama_parse import LlamaParsefrom typing import List, Optionalfrom pydantic import BaseModel, Fieldfrom llama_index.llms.openai import OpenAI# Setup Indexindex = LlamaCloudIndex(name="gdpr",project_name="llamacloud_demo",organization_id="cdcb3478-1348-492e-8aa0-25f47d1a3902",# api_key="llx-...")# Setup RAG proxy# similarity_top_k=2,相邻前2回进行提取retriever = index.as_retriever(similarity_top_k=2)# Setup Parserparser = LlamaParse(result_type="markdown")# Setup env,包含大模型,parser proxy,RAG proxyllm = OpenAI(model="gpt-4o")workflow = ContractReviewWorkflow(parser=parser,guideline_retriever=retriever,llm=llm,verbose=True,timeout=None,)# Setup 合同 Output 格式class ContractClause(BaseModel):clause_text: str = Field(..., description="The exact text of the clause.")mentions_data_processing: bool = Field(False, description="True if the clause involves personal data collection or usage.")mentions_data_transfer: bool = Field(False, description="True if the clause involves transferring personal data, especially to third parties or across borders.")requires_consent: bool = Field(False, description="True if the clause explicitly states that user consent is needed for data activities.")specifies_purpose: bool = Field(False, description="True if the clause specifies a clear purpose for data handling or transfer.")mentions_safeguards: bool = Field(False, description="True if the clause mentions security measures or other safeguards for data.")class ContractExtraction(BaseModel):vendor_name: Optional[str] = Field(None, description="The vendor's name if identifiable.")effective_date: Optional[str] = Field(None, description="The effective date of the agreement, if available.")governing_law: Optional[str] = Field(None, description="The governing law of the contract, if stated.")clauses: List[ContractClause] = Field(..., description="List of extracted clauses and their relevant indicators.")# Setup 合同检查内容class GuidelineMatch(BaseModel):guideline_text: str = Field(..., description="The single most relevant guideline excerpt related to this clause.")similarity_score: float = Field(..., description="Similarity score indicating how closely the guideline matches the clause, e.g., between 0 and 1.")relevance_explanation: Optional[str] = Field(None, description="Brief explanation of why this guideline is relevant.")# 级联检查项class ClauseComplianceCheck(BaseModel):clause_text: str = Field(..., description="The exact text of the clause from the contract.")matched_guideline: Optional[GuidelineMatch] = Field(None, description="The most relevant guideline extracted via vector retrieval.")compliant: bool = Field(..., description="Indicates whether the clause is considered compliant with the referenced guideline.")notes: Optional[str] = Field(None, description="Additional commentary or recommendations.")# Setup Contract Review Workflow# 1.从知识库协议中提取结构化数据。# 2.对于每个条款,根据 Setup 合同检查内容进行检索,看其是否符合准则。# 3.生成最终摘要和判断结果。from llama_index.core.workflow import (Event,StartEvent,StopEvent,Context,Workflow,step,)from llama_index.core.llms import LLMfrom typing import Optionalfrom pydantic import BaseModelfrom llama_index.core import SimpleDirectoryReaderfrom llama_index.core.schema import Documentfrom llama_index.core.agent import FunctionCallingAgentWorkerfrom llama_index.core.prompts import ChatPromptTemplatefrom llama_index.core.llms import ChatMessage, MessageRolefrom llama_index.core.retrievers import BaseRetrieverfrom pathlib import Pathimport loggingimport jsonimport os# 设置日志_logger = logging.getLogger(__name__)_logger.setLevel(logging.INFO)# 开始设置 prompt# 提取内容 promptCONTRACT_EXTRACT_PROMPT = """\You are given contract data below. \Please extract out relevant information from the contract into the defined schema - the schema is defined as a function call.\{contract_data}"""# 内容和知识库匹配 promptCONTRACT_MATCH_PROMPT = """\Given the following contract clause and the corresponding relevant guideline text, evaluate the compliance \and provide a JSON object that matches the ClauseComplianceCheck schema.**Contract Clause:**{clause_text}**Matched Guideline Text(s):**{guideline_text}"""# 级联检查项 promptCOMPLIANCE_REPORT_SYSTEM_PROMPT = """\You are a compliance reporting assistant. Your task is to generate a final compliance report \based on the results of clause compliance checks against \a given set of guidelines.Analyze the provided compliance results and produce a structured report according to the specified schema.Ensure that if there are no noncompliant clauses, the report clearly indicates full compliance."""# 报告输出格式 promptCOMPLIANCE_REPORT_USER_PROMPT = """\A set of clauses within a contract were checked against GDPR compliance guidelines for the following vendor: {vendor_name}.The set of noncompliant clauses are given below.Each section includes:- **Clause:** The exact text of the contract clause.- **Guideline:** The relevant GDPR guideline text.- **Compliance Status:** Should be `False` for noncompliant clauses.- **Notes:** Additional information or explanations.{compliance_results}Based on the above compliance results, generate a final compliance report following the `ComplianceReport` schema below.If there are no noncompliant clauses, the report should indicate that the contract is fully compliant."""class ContractExtractionEvent(Event):contract_extraction: ContractExtractionclass MatchGuidelineEvent(Event):clause: ContractClauseclass MatchGuidelineResultEvent(Event):result: ClauseComplianceCheckclass GenerateReportEvent(Event):match_results: List[ClauseComplianceCheck]class LogEvent(Event):msg: strdelta: bool = False# 工作流核心代码class ContractReviewWorkflow(Workflow):"""Contract review workflow."""def __init__(self, parser: LlamaParse, guideline_retriever: BaseRetriever,llm: LLM | None = None, similarity_top_k: int = 20, output_dir: str = "data_out",**kwargs,) -> None:"""Init params."""super().__init__(**kwargs)# 拿前面设置好的 llamaIndex 组件和环境self.parser = parserself.guideline_retriever = guideline_retrieverself.llm = llm or OpenAI(model="gpt-4o-mini")self.similarity_top_k = similarity_top_k# if not exists, createout_path = Path(output_dir) / "workflow_output"if not out_path.exists():out_path.mkdir(parents=True, exist_ok=True)os.chmod(str(out_path), 0o0777)self.output_dir = out_pathasync def parse_contract(self, ctx: Context, ev: StartEvent) -> ContractExtractionEvent:# load output template filecontract_extraction_path = Path(f"{self.output_dir}/contract_extraction.json")if contract_extraction_path.exists():if self._verbose:ctx.write_event_to_stream(LogEvent(msg=">> Loading contract from cache"))contract_extraction_dict = json.load(open(str(contract_extraction_path), "r"))contract_extraction = ContractExtraction.model_validate(contract_extraction_dict)else:if self._verbose:ctx.write_event_to_stream(LogEvent(msg=">> Reading contract"))# 设置 llamaParam 解析文档docs = SimpleDirectoryReader(input_files=[ev.contract_path]).load_data()# 构造提取内容 promptprompt = ChatPromptTemplate.from_messages([("user", CONTRACT_EXTRACT_PROMPT)])# 等待 LLM 返回结果,参数包含输入的文档,模型,promptcontract_extraction = await llm.astructured_predict(ContractExtraction,prompt,contract_data="\n".join([d.get_content(metadata_mode="all") for d in docs]))if not isinstance(contract_extraction, ContractExtraction):raise ValueError(f"Invalid extraction from contract: {contract_extraction}")# save output template to filewith open(contract_extraction_path, "w") as fp:fp.write(contract_extraction.model_dump_json())if self._verbose:ctx.write_event_to_stream(LogEvent(msg=f">> Contract data: {contract_extraction.dict()}"))return ContractExtractionEvent(contract_extraction=contract_extraction)async def dispatch_guideline_match(self, ctx: Context, ev: ContractExtractionEvent) -> MatchGuidelineEvent:"""For each clause in the contract, find relevant guidelines.Use a map-reduce pattern."""await ctx.set("num_clauses", len(ev.contract_extraction.clauses))await ctx.set("vendor_name", ev.contract_extraction.vendor_name)for clause in ev.contract_extraction.clauses:ctx.send_event(MatchGuidelineEvent(clause=clause, vendor_name=ev.contract_extraction.vendor_name))# 匹配知识库内容async def handle_guideline_match(self, ctx: Context, ev: MatchGuidelineEvent) -> MatchGuidelineResultEvent:"""Handle matching clause against guideline."""# 构造查询 promptquery = """Please find the relevant guideline from {ev.vendor_name} that aligns with the following contract clause:{ev.clause.clause_text}"""# 查询知识库 Embeddingguideline_docs = self.guideline_retriever.retrieve(query)guideline_text="\n\n".join([g.get_content() for g in guideline_docs])if self._verbose:ctx.write_event_to_stream(LogEvent(msg=f">> Found guidelines: {guideline_text[:200]}..."))# 提取知识库相关内容prompt = ChatPromptTemplate.from_messages([("user", CONTRACT_MATCH_PROMPT)])# 等待 LLM 处理知识库内容和输入内容正确性,参数包含检查代理,prompt,知识库dump出来的graph,输入需要匹配文本compliance_output = await llm.astructured_predict(ClauseComplianceCheck,prompt,clause_text=ev.clause.model_dump_json(),guideline_text=guideline_text)if not isinstance(compliance_output, ClauseComplianceCheck):raise ValueError(f"Invalid compliance check: {compliance_output}")return MatchGuidelineResultEvent(result=compliance_output)# 匹配结果async def gather_guideline_match(self, ctx: Context, ev: MatchGuidelineResultEvent) -> GenerateReportEvent:"""Handle matching clause against guideline."""num_clauses = await ctx.get("num_clauses")events = ctx.collect_events(ev, [MatchGuidelineResultEvent] * num_clauses)if events is None:returnmatch_results = [e.result for e in events]# save match resultsmatch_results_path = Path(f"{self.output_dir}/match_results.jsonl")with open(match_results_path, "w") as fp:for mr in match_results:fp.write(mr.model_dump_json() + "\n")return GenerateReportEvent(match_results=[e.result for e in events])# 输出async def generate_output(self, ctx: Context, ev: GenerateReportEvent) -> StopEvent:if self._verbose:ctx.write_event_to_stream(LogEvent(msg=">> Generating Compliance Report"))# if all clauses are compliant, return a compliant resultnon_compliant_results = [r for r in ev.match_results if not r.compliant]# generate compliance results stringresult_tmpl = """1. **Clause**: {clause}2. **Guideline:** {guideline}3. **Compliance Status:** {compliance_status}4. **Notes:** {notes}"""non_compliant_strings = []for nr in non_compliant_results:non_compliant_strings.append(result_tmpl.format(clause=nr.clause_text,guideline=nr.matched_guideline.guideline_text,compliance_status=nr.compliant,notes=nr.notes))non_compliant_str = "\n\n".join(non_compliant_strings)prompt = ChatPromptTemplate.from_messages([("system", COMPLIANCE_REPORT_SYSTEM_PROMPT),("user", COMPLIANCE_REPORT_USER_PROMPT)])compliance_report = await llm.astructured_predict(ComplianceReport,prompt,compliance_results=non_compliant_str,vendor_name=await ctx.get("vendor_name"))return StopEvent(result={"report": compliance_report, "non_compliant_results": non_compliant_results})
,Anthropic Claude 3.5:新 AI 版本可以像人类一样使用计算机53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-29
LlamaIndex 开发多智能体 Agents 入门基础
2025-09-27
LlamaIndex 开发智能体 Agents 要点解析
2025-07-21
LlamaIndex 是什么?普通人也能用它构建 AI 应用?
2025-07-13
手把手教你用 LlamaIndex 构建专属AI问答系统(新手友好版)
2025-07-04
LlamaIndex 开发大模型 Agent Workflow攻略
2025-07-01
llamaindex发布Workflows1.0轻量级编排框架
2025-05-27
Dify、n8n、Coze、Fastgpt、Ragflow到底该怎么选?超详细指南~
2025-05-27
19-LlamaIndexRAG进阶-文档切分与重排序