微信扫码
添加专属顾问
我要投稿
自2022年年末英伟达发布4090芯片以来,这款产品凭借着其优异的性能迅速在科技界占据了一席之地。现如今,不论是在游戏体验、内容创作能力方面还是模型精度提升方面,4090都是一个绕不过去的名字。而A100作为早些发布的产品,其优异的能力和适配性已经为它打下了良好的口碑。RTX 4090芯片和A100芯片虽然都是高性能的GPU,但它们在设计理念、目标市场和性能特点上有着明显的区别,而本篇文章将简单概述两者的区别同时介绍一下二者的特性。
GPU 训练性能和成本对比
虽然A100被称为深度学习神器,但是不一定代表他的性能任何时候都超过其他显卡,A100对标的是RTX 3090,都是Ampere架构的,而RTX 4090作为RTX 3090的升级版,架构是Ada Lovelace,单卡性能至少提升60%以上,RTX 4090在理论上核心性能远强于A100,下面这2个参数对比图也可以很直观的看出2张卡的差距。
RTX 4090与A100的FP16性能比较
根据之前的讨论,RTX 4090的FP16性能约为82.58 Tflops,而A100的FP16性能可达约312 Tflops。不过,随后我们发现实际使用中4090的FP16性能接近于A100。这可能是因为不同的测试条件和使用场景会影响性能测量,或者由于不同的硬件版本和配置。
从理论规格上看,A100确实在FP16上显示出更高的性能,但实际应用性能可能会有所不同,取决于具体任务和软件优化。
结论
既然 4090 单卡训练的性价比这么高,为啥不能用来做大模型训练呢?抛开不允许游戏显卡用于数据中心这样的许可证约束不谈,从技术上讲,根本原因是大模型训练需要高性能的通信。在大模型训练方面,A100比4090表现的更加优秀,但是在推理(inference/serving)方面,选择用 4090 芯片不仅可行,在性价比上还能比H100 稍高。而如果4090芯片对其进行极致优化,其性价比甚至可以达到 H100芯片 的 2 倍。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-03
OpenAI成立百人团队训练机械臂做家务,今年是否能迎来机器人管家
2026-01-31
AI硬件的宿命:要么“在场”,要么“进抽屉”
2026-01-31
我们测了十几款AI硬件,发现它们死于同一个问题
2026-01-29
LiteRT | 释放极致潜能,构建下一代高性能端侧 AI
2026-01-29
在树莓派CM0上部署 Clawdbot 真的有那么神奇吗?
2026-01-22
英伟达让机器人闪念决策:Fast-ThinkAct如何让AI思考速度快9倍还更聪明?
2026-01-20
AI手机的终极猜想:超级Agent入口|产业深度
2026-01-19
吃灰 AI 眼镜爆改“交警 Copilot”,函数计算AgentRun 实操记录
2025-12-05
2025-12-09
2025-11-09
2025-12-01
2025-12-08
2025-11-17
2025-12-15
2025-12-01
2025-12-03
2026-01-29
2026-01-29
2026-01-22
2026-01-06
2026-01-04
2026-01-02
2025-11-08
2025-10-27
2025-10-24