微信扫码
添加专属顾问
我要投稿
机器之心编辑部
让模型知道自己擅长什么、不擅长什么是一个很重要的问题。
我们遵循的原则是,后训练应使模型「知道它知道什么」,而不是增加知识。我们的主要方法是生成数据,使模型生成与预训练数据中的事实数据子集保持一致。为此,我们开发了一种知识探测技术,利用 Llama 3 的 in-context 能力。数据生成过程包括以下步骤:
1、从预训练数据中提取数据片段。 2、通过提示 Llama 3 生成一个关于这些片段(上下文)的事实问题。 3、采样 Llama 3 关于该问题的回答。 4、以原始上下文为参照,以 Llama 3 为裁判,评估生成的回答的正确性。 5、以 Llama 3 为裁判,评估生成回答的信息量。 6、对于 Llama 3 模型在多个生成过程中提供的信息虽多但内容不正确的回答,使用 Llama 3 生成拒绝回答的内容。
我们使用知识探测生成的数据来鼓励模型只回答它知道的问题,而拒绝回答它不确定的问题。此外,预训练数据并不总是与事实一致或正确。因此,我们还收集了一组有限的标注事实性数据,这些数据涉及与事实相矛盾或不正确的陈述。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:[email protected]
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Skills使用体验
2026-02-04
AgentScope 正式发布 Skills 支持 - 实现渐进式披露
2026-02-04
从“回答者”进化为“研究员”:全面解析 Deep Research
2026-02-04
刚刚,Xcode 史诗级更新:原生集成 Claude Agent SDK,苹果开发直接起飞!
2026-02-04
国产 Cowork 它来了!MCP、Skills和Expert Agents都支持,全部免费体验!
2026-02-04
混元研究博客上线姚顺雨团队最新成果:从 Context 探索语言模型的范式转变
2026-02-04
通俗讲解大模型短期记忆 vs 长期记忆
2026-02-04
谁动了我的电脑?谁应该抱怨?
2026-01-24
2026-01-10
2025-11-19
2025-11-13
2026-01-26
2026-01-01
2025-12-09
2025-11-12
2026-01-09
2025-12-21
2026-02-04
2026-02-03
2026-02-03
2026-02-02
2026-02-02
2026-02-02
2026-01-31
2026-01-30