微信扫码
添加专属顾问
 
                        我要投稿
深入解析RAG系统中的Embedding与Rerank模型:从稀疏向量到语义理解的技术演进。 核心内容: 1. 稀疏嵌入与稠密嵌入的本质区别及适用场景 2. Bi-Encoder与Cross-Encoder架构在检索与排序阶段的对比 3. LLM-Embedding与传统Embedding模型的训练差异与特性
 
                                1.引言
在RAG系统中,常见的两种优化方式包括:
这引出两个关键问题:
最近,qwen3-embedding模型发布后,备受关注,那llm-emb和上面独立-emb又有什么不同呢?
Sparse-Embedding: 基于词频统计的关键词匹配(代表算法如 BM25 和 TF-IDF),利用词频(TF)和逆文档频率(IDF)计算词的重要性。最终文本被表示为高维稀疏向量,非零元素对应出现的词项。
适用场景:关键词的精确匹配
Dense-Embedding: 基于深度学习模型(如 BERT)将文本编码为低维稠密向量,捕捉语义信息。通过余弦、L2等向量的相似度计算获取相关向量的重要性。最终文本被表示为低维稀疏向量。
适用场景:识别同义词和语义相近的表达
3.Embedding 与 Rerank
Embedding-model和Rerank-model分别采用了两种模型架构:Bi-Encoders 和Cross-Encoder。
4.llm-Embedding 与 Embedding-model
llm-embedding:其训练是和所有的transformer block一起训练的,最终的优化目标是为了提高下一个token的准确率,其输出的向量内含“上下文理解”和“未来指向性”的信息浓度,这是embedding模型所不具备的。
Embedding模型:采用对比学习进行训练,文本对,存在正负样本。损失函数:在向量空间中,拉近正例对的向量距离,推远负例对的向量距离。生成的向量在衡量句子间“意思是否相近”这个问题上表现得极其出色,是专门为语义搜索、聚类、RAG(检索增强生成)等任务量身定做的。
qwen3-emb采用decoder-only架构实现,其具备instruct能力,通过给到适当的prompt 去“调节任务逻辑”,让同一个模型能适配不同类型的召回或匹配任务。(兴奋兴奋) 举例:"岗位召回简历的匹配场景"
在emb时添加指令"Given a resume and a job description, determine whether the candidate strictly meets the job requirements"即可切换该场景
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-31
Opera One升级内置AI 迎来智能助手新纪元
2025-10-31
LangExtract——大模型文本提炼工具
2025-10-31
用户测评|DeepSeek-OCR,你用了吗?
2025-10-31
从Palantir智能化技术路线看AI时代企业级架构平台的核心战略位置
2025-10-31
OpenAI 公开 Atlas 架构:为 Agent 重新发明浏览器
2025-10-31
Palantir 本体论模式:重塑企业 AI 应用的 “语义根基” 与产业启示
2025-10-31
树莓派这种“玩具级”设备,真能跑大模型吗?
2025-10-30
Cursor 2.0的一些有趣的新特性
 
            2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20