微信扫码
添加专属顾问
我要投稿
手把手教你用Colab免费微调Qwen3-4B模型,轻松实现本地大模型部署! 核心内容: 1. 详细的环境配置与GPU资源检查步骤 2. 从下载模型到启动服务的完整流程 3. 数据集构建与模型验证的关键操作
pip install unsloth -i https://pypi.tuna.tsinghua.edu.cn/simple
import torchdef print_cuda_info():try:print("-" * 40)print("PyTorch CUDA Environment Information:")print("-" * 40)if torch.cuda.is_available():device_count = torch.cuda.device_count()print(f"Number of CUDA devices: {device_count}")if device_count > 0:device_name = torch.cuda.get_device_name(0)print(f"0th CUDA Device Name: {device_name}")total_memory = torch.cuda.get_device_properties(0).total_memoryallocated_memory = torch.cuda.memory_allocated(0)free_memory = total_memory - allocated_memoryprint(f"Total Memory: {total_memory / (1024 ** 3):.2f} GB")print(f"Allocated Memory: {allocated_memory / (1024 ** 3):.2f} GB")print(f"Free Memory: {free_memory / (1024 ** 3):.2f} GB")else:print("No CUDA devices found.")else:print("CUDA is not available.")print("-" * 40)except Exception as e:print("-" * 40)print(f"An error occurred: {e}")print("-" * 40)if __name__ == "__main__":print_cuda_info()
curl -fsSL https://ollama.com/install.sh | sh
ollama serve &
ollama pull qwen3:4B
(下载完成后需结束当前运行进程)
from unsloth import FastLanguageModelfrom datasets import load_datasetimport torch# 配置max_seq_length = 2048load_in_4bit = True # 4bit量化# 从 Hugging Face Hub 加载模型和分词器model, tokenizer = FastLanguageModel.from_pretrained("Qwen/Qwen3-4B-Instruct-2507", # 模型名称max_seq_length=max_seq_length,load_in_4bit=load_in_4bit,trust_remote_code=True # Qwen模型需此参数)# 配置 LoRA 适配器model = FastLanguageModel.get_peft_model(model,r=16,target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj",],lora_alpha=16,lora_dropout=0,bias="none",use_gradient_checkpointing="unsloth",random_state=3407,use_rslora=False,loftq_config=None,)EOS_TOKEN = tokenizer.eos_token# 加载数据集(需修改为你的数据集路径)dataset = load_dataset("json", data_files="/content/noli.json", split="train")# 查看数据集信息print("数据集样例:", dataset[0])print("数据集大小:", len(dataset))
# 导入必要的库from unsloth import FastLanguageModelfrom datasets import load_dataset, Datasetfrom trl import SFTTrainerfrom transformers import TrainingArgumentsfrom unsloth import is_bfloat16_supportedimport torch# --- 1. 模型和分词器加载 ---print("正在加载模型和分词器...")model, tokenizer = FastLanguageModel.from_pretrained(model_name="Qwen/Qwen3-4B-Instruct-2507",max_seq_length=2048,load_in_4bit=True,trust_remote_code=True # Qwen 模型需要此参数)print("模型和分词器加载完成。")# --- 2. LoRA 配置 ---print("正在配置LoRA适配器...")model = FastLanguageModel.get_peft_model(model,r=16,target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj"],lora_alpha=16,lora_dropout=0,bias="none",use_gradient_checkpointing="unsloth",random_state=3407,use_rslora=False,loftq_config=None,)print("LoRA适配器配置完成。")# --- 3. 数据集加载 ---print("正在加载数据集...")raw_dataset = load_dataset("json", data_files="/content/NOLI.json", split="train") # 修改为你的数据集路径print(f"原始数据集加载完成。数据集大小: {len(raw_dataset)}")print("原始数据集样例:", raw_dataset[0])# --- 4. 预处理数据集:添加 'text' 列 ---def create_text_column(example):"""将单个样本格式化为模型训练所需的文本格式。"""# 安全地获取字段,确保是字符串instruction = str(example.get("instruction", "")).strip()input_text = str(example.get("input", "")).strip()output_text = str(example.get("output", "")).strip()# 构建用户部分if input_text:user_content = f"{instruction}\n{input_text}"else:user_content = instruction# 构建完整的提示(符合Qwen3对话格式)full_prompt = (f"<|im_start|>user\n{user_content}<|im_end|>\n"f"<|im_start|>assistant\n{output_text}<|im_end|>")return {"text": full_prompt}print("正在预处理数据集,添加 'text' 列...")# 使用 map 函数为数据集中的每个样本添加 'text' 列dataset = raw_dataset.map(create_text_column)print("数据集预处理完成。")print("处理后数据集样例:", dataset[0])# --- 5. 配置并创建 SFTTrainer ---print("正在配置SFTTrainer...")trainer = SFTTrainer(model=model,tokenizer=tokenizer,train_dataset=dataset, # 使用预处理后的数据集dataset_text_field="text", # 指定使用 'text' 列max_seq_length=2048,dataset_num_proc=2,packing=False, # 此格式下禁用packingargs=TrainingArguments(per_device_train_batch_size=2,gradient_accumulation_steps=4,warmup_steps=5,max_steps=100, # 可根据需求调整训练步数learning_rate=2e-4,fp16=not is_bfloat16_supported(),bf16=is_bfloat16_supported(),logging_steps=5,optim="adamw_8bit",output_dir="./qwen_finetune_output_v2",overwrite_output_dir=True,report_to="none", # 禁用外部日志记录seed=3407,),)print("SFTTrainer配置完成。")# --- 6. 开始训练 ---print("开始训练...")trainer.train()print("训练完成。")# --- 7. 保存 LoRA 权重 ---print("正在保存LoRA适配器权重...")model.save_pretrained("./lora_adapters_v2")tokenizer.save_pretrained("./lora_adapters_v2") # 同时保存分词器配置print("LoRA适配器已保存到 './lora_adapters_v2' 目录。")
# 导入必要的库from unsloth import FastLanguageModelimport torchfrom peft import PeftModel # 用于加载和合并LoRA权重# --- 1. 加载基础模型(非4bit量化,用于完整权重合并)---print("正在加载基础模型...")model, tokenizer = FastLanguageModel.from_pretrained(model_name="Qwen/Qwen3-4B-Instruct-2507",max_seq_length=2048,load_in_4bit=False, # 加载完整精度模型trust_remote_code=True)print("基础模型加载完成。")# --- 2. 加载 LoRA 适配器 ---print("正在加载LoRA适配器...")model = PeftModel.from_pretrained(model=model,model_id="/content/lora_adapters_v2" # LoRA权重保存路径)print("LoRA适配器加载完成。")# --- 3. 合并 LoRA 权重到基础模型 ---print("正在合并LoRA权重到基础模型...")model = model.merge_and_unload() # 执行权重合并print("权重合并完成。")# --- 4. 保存完整模型(32位和16位)---print("正在保存完整模型...")# 保存为32位完整模型(高精度,体积较大)model.save_pretrained("./qwen_merged_full_model")tokenizer.save_pretrained("./qwen_merged_full_model")# 保存为16位模型(平衡精度与体积)model.save_pretrained("./qwen_merged_full_model_16bit", torch_dtype=torch.float16)tokenizer.save_pretrained("./qwen_merged_full_model_16bit")print("完整模型保存完成!")print("32位模型保存路径:./qwen_merged_full_model")print("16位模型保存路径:./qwen_merged_full_model_16bit")
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamerimport torchfrom typing import List, Tuplefrom threading import Thread# --- 1. 加载模型和分词器 ---model_path = "./qwen_merged_full_model_16bit" # 16位模型路径print(f"正在加载模型: {model_path}...")tokenizer = AutoTokenizer.from_pretrained(model_path,trust_remote_code=True,padding_side="left")# 确保pad_token存在(使用eos_token作为pad_token)if tokenizer.pad_token is None:tokenizer.pad_token = tokenizer.eos_tokenmodel = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.float16,device_map="auto", # 自动分配设备(优先GPU)trust_remote_code=True)model.eval() # 推理模式print("模型加载完成,可开始对话。")# --- 2. 自定义流式输出器(仅打印新生成内容)---class CurrentResponseStreamer(TextStreamer):def __init__(self, tokenizer, input_prompt_length: int, skip_prompt: bool = True, **decode_kwargs):super().__init__(tokenizer, skip_prompt=skip_prompt, **decode_kwargs)self.input_prompt_length = input_prompt_lengthself.first_token = Truedef on_finalized_text(self, text: str, stream_end: bool = False):if self.first_token:print("Noli: ", end="", flush=True)self.first_token = Falseprint(text, end="", flush=True)if stream_end:print() # 结束时换行# --- 3. 流式生成函数 ---def generate_response_streaming(conversation_history: List[Tuple[str, str]]):"""根据对话历史生成流式响应,并返回完整响应文本"""# 构建完整对话promptprompt = ""for role, content in conversation_history:if role == "user":prompt += f"<|im_start|>user\n{content}<|im_end|>\n"else:prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"prompt += f"<|im_start|>assistant\n" # 启动助手回复生成# 计算输入prompt的token长度input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"]input_prompt_length = input_ids.shape[1]# 移动输入到模型设备inputs = {"input_ids": input_ids.to(model.device),"attention_mask": tokenizer(prompt, return_tensors="pt")["attention_mask"].to(model.device),}# 初始化流式输出器streamer = CurrentResponseStreamer(tokenizer,input_prompt_length=input_prompt_length,skip_special_tokens=True)# 启动流式生成(独立线程)generation_kwargs = dict(**inputs,max_new_tokens=512,temperature=0.7,top_p=0.9,repetition_penalty=1.1,eos_token_id=tokenizer.eos_token_id,pad_token_id=tokenizer.pad_token_id,do_sample=True,streamer=streamer)thread = Thread(target=model.generate, kwargs=generation_kwargs)thread.start()thread.join() # 等待生成完成# 生成完整响应文本(用于更新对话历史)with torch.no_grad():outputs = model.generate(**inputs,max_new_tokens=512,temperature=0.7,top_p=0.9,repetition_penalty=1.1,eos_token_id=tokenizer.eos_token_id,pad_token_id=tokenizer.pad_token_id,do_sample=True)# 仅解码新生成的部分generated_ids = outputs[:, inputs['input_ids'].shape[1]:]full_response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)return full_response# --- 4. 对话主程序 ---if __name__ == "__main__":conversation_history: List[Tuple[str, str]] = []print("你好!我是诺丽,一个AI助手。输入'退出'即可结束对话。")while True:try:user_input = input("\n你: ").strip()if not user_input:continueif user_input.lower() in ["退出", "quit", "exit"]:print("Noli: 再见!很高兴与你交谈。")break# 更新对话历史conversation_history.append(("user", user_input))# 流式生成响应current_response = generate_response_streaming(conversation_history)# 保存完整响应到历史conversation_history.append(("assistant", current_response))except KeyboardInterrupt:print("\n\nNoli: 看起来你中断了对话。再见!")breakexcept Exception as e:print(f"\nNoli: 抱歉,处理你的请求时出现了错误: {e}")
解决办法:重启 Colab 会话(菜单栏 -> Runtime -> Restart session)
from google.colab import driveimport osimport shutil# 1. 挂载 Google 云盘print("正在挂载 Google 云盘...")if not os.path.ismount('/content/drive'):drive.mount('/content/drive')print("Google 云盘已挂载。")else:print("Google 云盘已挂载。")# 2. 定义路径(可修改目标路径)source_dir_path = '/content/lora_adapters_v2' # LoRA权重源路径destination_folder_path = '/content/drive/MyDrive/lora' # 云盘目标文件夹destination_dir_path = os.path.join(destination_folder_path, os.path.basename(source_dir_path))# 配置:是否覆盖已存在的目标目录OVERWRITE_EXISTING = True# 3. 创建目标文件夹(若不存在)os.makedirs(destination_folder_path, exist_ok=True)print(f"目标备份文件夹: {destination_folder_path}")# 4. 检查源目录有效性if not os.path.exists(source_dir_path) or not os.path.isdir(source_dir_path):print(f"❌ 错误:源目录不存在或不是目录 - {source_dir_path}")else:try:# 计算源目录大小source_size_mb = sum(os.path.getsize(os.path.join(dirpath, filename))for dirpath, dirnames, filenames in os.walk(source_dir_path)for filename in filenames) / (1024 * 1024)print(f"✅ 找到源目录: {source_dir_path} (估算大小: {source_size_mb:.2f} MB)")# 处理目标目录已存在的情况if os.path.exists(destination_dir_path):dest_size_mb = sum(os.path.getsize(os.path.join(dirpath, filename))for dirpath, dirnames, filenames in os.walk(destination_dir_path)for filename in filenames) / (1024 * 1024)print(f"⚠️ 警告:目标目录已存在 - {destination_dir_path} (估算大小: {dest_size_mb:.2f} MB)")if OVERWRITE_EXISTING:print("正在删除旧目录以覆盖...")shutil.rmtree(destination_dir_path)print("旧目录已删除。")else:print("OVERWRITE_EXISTING=False,跳过复制。")print("如需覆盖,请将 OVERWRITE_EXISTING 设为 True。")# 复制目录到云盘if OVERWRITE_EXISTING or not os.path.exists(destination_dir_path):print(f"正在复制目录到云盘...")print(f" 源: {source_dir_path}")print(f" 目标: {destination_dir_path}")shutil.copytree(source_dir_path, destination_dir_path)print(f"✅ 目录已备份到云盘: {destination_dir_path}")else:print("操作已取消或跳过。")except Exception as e:print(f"❌ 复制错误: {e}")
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-07
2025-08-25
2025-10-12
2025-08-23
2025-08-11
2025-09-07
2025-10-14
2025-09-04
2025-09-09
2025-08-18