微信扫码
添加专属顾问
我要投稿
医疗AI大模型实战指南:如何将零散病程一键转化为标准化首诊病史,提升医院工作效率。核心内容: 1. 首诊病史自动结构化的临床价值与痛点分析 2. 6步流水线技术方案详解(从去标识化到人机联审) 3. Agentic RAG等前沿算法在医疗场景的落地策略
科研、项目、商务合作:nnhhce (注明来意,清北硕博团队专注于AI for Science大模型)
独家整理,盗用必究
❝这不是“泛泛而谈”的大模型文章。我们只聚焦一个可立刻落地的细分场景:把住院/门诊的零散病程笔记,自动生成结构化的“首诊病史(H&P)文档,并直接映射为 FHIR 文档包,进入院内系统联审与归档。 文末有可复用代码与30/60/90 天落地清单。 (⚠️ 声明:本文仅用于学术与工程交流,不构成任何医疗建议;临床使用须经伦理与信息安全评审。)
医护写作负担重、模板多、风格杂,信息碎片化(查房记录、病程小结、化验回报、会诊意见散落在不同时间段的笔记里)。
只要把这些碎片熬成一碗“标准化首诊病史”(主诉、现病史、既往史、用药史、过敏史、体温脉搏血压等体征、问题列表),就能立刻:
输入: 某患者若干天内的病程/检验/会诊自由文本;输出: 一份结构化 H&P(FHIR Bundle + Composition + Condition/MedicationStatement/AllergyIntolerance 等),同时生成医生可校对的自然语言版本。
流水线:
去标识化(De-ID):先做 PHI/PII 去标识,满足隐私与研究合规。
笔记分段/章节识别(Sectionizer):识别“主诉/现病史/既往史”等章节。
Agentic RAG(第一次检索):
自我反思与纠偏(Self-RAG / CRAG):
结构化映射(FHIR Mapping):
人机联审与对齐训练(DPO/ORPO/RLAIF):
❝说明:以下代码仅演示架构与接口,省略实际大模型/外部服务调用;在院内部署时请接入贵院的私有大模型与知识库。
# pip install regex rank_bm25 faiss-cpu transformers # 根据环境调整
import re, math, json
from rank_bm25 import BM25Okapi
SECTION_HEADERS = {
"chief_complaint": [r"主诉[::]", r"Chief Complaint", r"CC[::]"],
"history_present_illness": [r"现病史[::]", r"History of Present Illness", r"HPI[::]"],
"past_history": [r"既往史[::]", r"Past Medical History", r"PMH[::]"],
"medications": [r"用药史[::]", r"Medications?[::]"],
"allergies": [r"过敏史[::]", r"Allerg(y|ies)[::]"],
}
def sectionize(note: str):
spans = []
for key, pats in SECTION_HEADERS.items():
for p in pats:
for m in re.finditer(p, note, flags=re.I):
spans.append((m.start(), key))
spans.sort()
sections = {}
for i, (start, key) in enumerate(spans):
end = spans[i+1][0] if i+1 < len(spans) else len(note)
sections[key] = note[start:end].strip()
return sections
# --- Hybrid retrieval (BM25 + dense placeholder) ---
def bm25_topk(query, corpus, k=8):
tokenized = [doc.split() for doc in corpus]
bm25 = BM25Okapi(tokenized)
scores = bm25.get_scores(query.split())
ranking = sorted(range(len(corpus)), key=lambda i: scores[i], reverse=True)[:k]
return [(i, scores[i]) for i in ranking]
def dense_topk(query_emb, doc_embs, k=8):
# 这里用占位的余弦相似度;实际请加载如 BAAI/bge-m3 向量模型。
def cos(a, b):
dot = sum(x*y for x,y in zip(a,b))
na = math.sqrt(sum(x*x for x in a)); nb = math.sqrt(sum(x*x for x in b))
return dot/(na*nb+1e-9)
sims = [cos(query_emb, e) for e in doc_embs]
ranking = sorted(range(len(doc_embs)), key=lambda i: sims[i], reverse=True)[:k]
return [(i, sims[i]) for i in ranking]
def hybrid_rerank(query, passages, query_emb, doc_embs, k=8):
bm = bm25_topk(query, passages, k*3)
dn = dense_topk(query_emb, doc_embs, k*3)
cand = {i:max(bs, ds) for (i,bs) in bm for (j,ds) in dn if i==j}
# 交叉重排(monoT5)在此处调用实际重排模型:返回 top-k 索引
top = sorted(cand.items(), key=lambda x: x[1], reverse=True)[:k]
return [passages[i] for i,_ in top]
class AgentCritic:
def critique(self, query, evidence_snippets, draft):
"""
返回 {need_more_retrieval: bool, contradictions: list, missing_facts: list}
真正实现中,可用带“反思标记”的 Self-RAG 或轻量评估器判断检索质量。
"""
signals = {"need_more_retrieval": False, "contradictions": [], "missing_facts": []}
for ev in evidence_snippets:
if"过敏"in query and"无过敏"in draft and"青霉素过敏"in ev:
signals["contradictions"].append("过敏史矛盾")
signals["need_more_retrieval"] = len(signals["contradictions"])>0
return signals
def generate_hpi(llm, sections, evidence):
# 提示词省略:包含“引用证据写作”“逐条列出事实-证据映射”“无法确认要标记‘待核实’”
draft = llm.generate(sections, evidence)
critic = AgentCritic().critique(sections.get("history_present_illness",""), evidence, draft)
if critic["need_more_retrieval"]:
# 触发 CRAG 纠偏:改写查询/扩大检索,再生成
more_evidence = evidence # 这里应调用新的检索
draft = llm.generate(sections, more_evidence, critique=critic)
return draft
def to_fhir_bundle(patient_id, author_id, h_and_p_sections, problems, meds, allergies):
composition = {
"resourceType":"Composition",
"status":"final",
"type": {"coding":[{"system":"http://loinc.org","code":"34117-2","display":"History and physical note"}]},
"subject":{"reference":f"Patient/{patient_id}"},
"author":[{"reference":f"Practitioner/{author_id}"}],
"title":"首诊病史(自动生成,已人工复核)",
"section":[
{"title":"主诉","text":{"status":"generated","div":h_and_p_sections.get("chief_complaint","")}},
{"title":"现病史","text":{"status":"generated","div":h_and_p_sections.get("history_present_illness","")}},
{"title":"既往史","text":{"status":"generated","div":h_and_p_sections.get("past_history","")}},
{"title":"用药史","text":{"status":"generated","div":h_and_p_sections.get("medications","")}},
{"title":"过敏史","text":{"status":"generated","div":h_and_p_sections.get("allergies","")}},
]
}
entries = [{"resource": composition}]
for p in problems:
entries.append({"resource":{
"resourceType":"Condition",
"clinicalStatus":{"coding":[{"system":"http://terminology.hl7.org/CodeSystem/condition-clinical","code":"active"}]},
"code": {"text": p["name"]},
"onsetDateTime": p.get("onset"),
}})
for m in meds:
entries.append({"resource":{
"resourceType":"MedicationStatement",
"status":"active",
"medicationCodeableConcept":{"text":m["name"]},
"dosage":[{"text": m.get("text","")}]
}})
for a in allergies:
entries.append({"resource":{
"resourceType":"AllergyIntolerance",
"clinicalStatus":{"coding":[{"system":"http://terminology.hl7.org/CodeSystem/allergyintolerance-clinical","code":"active"}]},
"code":{"text":a["substance"]},
"reaction":[{"description":a.get("reaction","")}]
}})
return {"resourceType":"Bundle","type":"document","entry":entries}
数据:
指标:
安全与合规:
[证据#i]
标明来源片段编号;生成后进行自我检查,如发现证据冲突,先输出冲突清单,再请求二次检索。”D+30:
D+60:
D+90:
———— end ————
科研、项目、商务合作:nnhhce (注明来意,清北硕博团队专注于AI for Science大模型)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-06
从万科“活下去”到AI转型,现在是所有企业面对“活下去”的抉择
2025-09-06
突破 1 万亿参数! 阿里巴巴发布 Qwen3 Max 预览版:迄今为止千问家族最大模型
2025-09-06
“浏览器,重新开机”:从 Dia 被收购到 Comet、Claude 与 Fellou,AI 正在重写入口之战
2025-09-06
当我们谈论“AI原生”时我们在谈论什么?
2025-09-06
超1万亿参数!阿里史上最大最强模型免费上线,实测几秒完成程序员半天工作
2025-09-05
当AI开始“懂你”:一文读懂上下文工程如何让AI助手更聪明
2025-09-05
从试点到转型:企业AI战略的真正挑战
2025-09-05
LLM生成的分段总不满意?实践带你实现文本分段可视化
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-12
2025-06-19
2025-06-13
2025-07-29
2025-06-15
2025-08-19
2025-09-06
2025-09-03
2025-09-03
2025-09-03
2025-09-03
2025-09-02
2025-08-28
2025-08-28