微信扫码
添加专属顾问
我要投稿
from langchain.chains.summarize import load_summarize_chainfrom langchain_community.document_loaders import WebBaseLoaderfrom langchain_openai import ChatOpenAI#加载网络文档loader = WebBaseLoader("<您博客文章的URL>")docs = loader.load()#配置LLM,例如使用OpenAI的模型llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-1106")chain = load_summarize_chain(llm, chain_type="stuff")#执行文档总结summary = chain.run(docs)print(summary)from langchain_core.documents.base import Document as LangchainDocumentdocs = LangchainDocument(page_content=content, metadata={})from langchain_text_splitters import CharacterTextSplitterfrom langchain.chains.summarize import load_summarize_chain# Define LLM chainllm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k") chain = load_summarize_chain(llm, chain_type="refine")text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=max_token, chunk_overlap=0)split_docs = text_splitter.split_documents([docs])summary = chain.run(split_docs)53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
2025-10-29
DocReward:让智能体“写得更专业”的文档奖励模型
2025-10-29
沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略
2025-10-29
大模型的Funcation Calling是什么?
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20
2025-10-29
2025-10-29
2025-10-28
2025-10-28
2025-10-27
2025-10-26
2025-10-25
2025-10-23