微信扫码
添加专属顾问
我要投稿
Vanna 是一个开源的 Python RAG(检索增强生成)框架,用于 SQL 生成和其他相关功能。它使用大型语言模型(LLM)来实现准确的文本到 SQL 生成。
Vanna 的工作原理:
1.在你的数据上训练一个 RAG “模型”。2.提出问题,Vanna 会返回 SQL 查询,这些查询可以被设置为自动运行在你的数据库上。
用户界面:
Vanna 提供了多种用户界面,例如 Jupyter Notebook、Streamlit、Flask 和 Slack,方便你使用。
安装:
pip install vanna
使用示例:
from vanna.openai.openai_chat import OpenAI_Chatfrom vanna.chromadb.chromadb_vector import ChromaDB_VectorStoreclass MyVanna(ChromaDB_VectorStore, OpenAI_Chat):def __init__(self, config=None):ChromaDB_VectorStore.__init__(self, config=config)OpenAI_Chat.__init__(self, config=config)vn = MyVanna(config={'api_key': 'sk-...', 'model': 'gpt-4-...'})
训练:
•
使用 DDL 语句进行训练,例如:
vn.train(ddl="""CREATE TABLE IF NOT EXISTS my-table (id INT PRIMARY KEY,name VARCHAR(100),age INT)""")
•
使用文档进行训练,例如:
vn.train(documentation="Our business defines XYZ as ...")
•
使用 SQL 查询进行训练,例如:
vn.train(sql="SELECT name, age FROM my-table WHERE name = 'John Doe'")
提问:
vn.ask("What are the top 10 customers by sales?")Vanna 的优势:
•高精度:在复杂数据集上表现出色。•安全和私密:你的数据库内容不会被发送到 LLM 或向量数据库。•自学习:可以根据成功执行的查询进行自动训练。•支持任何 SQL 数据库。•可扩展性强:可以轻松扩展到使用自定义的 LLM 或向量数据库。
项目地址:https://github.com/vanna-ai/vanna
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21