微信扫码
添加专属顾问
我要投稿
Jina Reranker v2的多语言
显示了recall@10分数
使用NSText2SQL数据集基准测试了查询感知能力。从原始数据集的“指令”列中提取用自然语言编写的指令,以及相应的表格schema。
使用ToolBench基准测试评估了该项能力,该基准测试收集了超过16,000个公共API及其相应的合成生成指令。
与其他重排模型相比的结果(使用recall@3指标)
在整个RAG流程中,除了Reranker,还涉及Embedding、Indexing等等,PaperAgent团队RAG专栏进行过详细的归纳总结:高级RAG之36技(术),可私信留言试看:RAG专栏。
https://huggingface.co/jinaai/jina-reranker-v2-base-multilingualhttps://jina.ai/news/jina-reranker-v2-for-agentic-rag-ultra-fast-multilingual-function-calling-and-code-search/?nocache=1
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10