微信扫码
添加专属顾问
我要投稿
在TriviaQA上的任务指令I下,基础版与指导+模板版之间的比较。该图展示了两个版本的Llama 2 7B模型生成的回答之间的比较:基础版和指导+模板版。每个版本都被赋予了基于提供文档回答同一问题的任务。基础模型正确地识别出答案为“Burgess Meredith”,而指导+模板版错误地将答案归因于“Danny DeVito”。斜体文本表示模板
在TriviaQA上的任务指令II下,基础版与指导+模板版之间的比较。这种比较展示了Llama 2 7B的基础版和指导+模板版生成的回答之间的一个例子,其中基础模型正确地识别了答案,而指导+模板版错误地将答案归因于不同的演员。尽管如此,在两种情况下,答案都与证据“一致”,因为每项证据都包含了生成的答案。斜体文本表示模板。
图6:在NQ上,任务指令I下的基础版与指导版,不允许拒绝回答。这张图展示了在不允许拒绝回答的设置下的回答情况,即模型不需要在检索文档中不包含答案时回答NO-RES。它比较了Falcon 7B的基础版和指导版。基础模型准确地识别出“Rocky”(洛奇)是1976年奥斯卡最佳影片奖的获奖者,而指导版错误地引用了“Network”(电视台)。
在整个RAG流程中,除了Generation,还涉及Embedding、Indexing等等,PaperAgent团队RAG专栏进行过详细的归纳总结:高级RAG之36技(术),可私信留言试看:RAG专栏。
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systemshttps://arxiv.org/pdf/2406.14972https://github.com/florin-git/Base-vs-Instruct-LLMs-in-RAG-Systems
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
涌现观点|RAG评估的"不可能三角":当独角兽公司因AI评估失误损失10亿美元时,我们才意识到这个被忽视的技术死角
2025-08-29
RAG2.0进入“即插即用”时代!清华YAML+MCP让复杂RAG秒变“乐高”
2025-08-29
利用RAG构建智能问答平台实战经验分享
2025-08-29
RAG如七夕,鹊桥大工程:再看文档解析实际落地badcase
2025-08-29
基于智能体增强生成式检索(Agentic RAG)的流程知识提取技术研究
2025-08-29
RAG 为何能瞬间找到答案?向量数据库告诉你
2025-08-28
寻找RAG通往上下文工程之桥:生成式AI的双重基石重构
2025-08-28
万字长文详解优图RAG技术
2025-06-05
2025-06-06
2025-06-05
2025-06-05
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-06-05