微信扫码
添加专属顾问
我要投稿
RankRAG微调框架
第一阶段的SFT数据:用于维持指令跟随能力
上下文丰富的QA数据:涵盖了DROP、NarrativeQA、Quoref、ROPES、NewsQA、TAT-QA等数据集,每条数据包含问题、黄金上下文(golden context)和答案
会话QA数据集:如Synthetic Conversation和HumanAnnotatedConvQA,同时包括对话内容以及一份背景文档
检索增强的QA数据:不仅包括SQuAD和WebQuestions中的问题和答案,还用BM25将黄金上下文和检索到的top结果组合起来,确保每条数据都有5个上下文,其中有些上下文可能不包括问题答案,甚至是hard-negative,这是为了重点提高LLM对不相关上下文的鲁棒性
上下文排名数据:使用流行的MS Marco语义相关性数据集,将其中的黄金样本视为相关的查询-段落对 (?,?+),BM25挖掘的hard negtive (?,?−)则被视为不相关,让LLM对这些样本的相关性进行二元分类(True或False)
检索增强的排名数据:同样使用QA数据集SQuAD和WebQuestions,以及BM25检索到的上下文,训练LLM的对相关性进行排名的能力
实验
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10