微信扫码
添加专属顾问
我要投稿
向量模型是RAG系统中实现有效信息检索和生成的关键技术之一,它们使得系统能够处理复杂的语言理解任务,并生成更加准确和相关的输出。
向量模型将文本转换为向量形式,便于在高维空间中进行快速的相似性检索,这是RAG系统中检索相关信息的基石。通过向量化,模型能够评估不同文本之间的语义相似度,即使在词汇不完全匹配的情况下也能找到语义相关的文档。向量模型帮助系统捕捉输入查询的上下文信息,这对于理解用户意图并检索最相关的信息至关重要。
本篇文章将为大家介绍在langchain中使用自己向量模型的方法,帮助大家扫清障碍快速搭建RAG和Agent流程。
环境依赖
pip install torch langchain sentence_transformers
模型选择
# 榜单地址https://huggingface.co/spaces/mteb/leaderboard
本文采用bge-m3模型作为例子,其是向量维数为1024维,支持的最大长度为8192,是一个支持多语言的模型,目前效果还算比较好。后面会专门写一篇文章介绍向量模型如何选择和评测。以下是bge-m3的一些信息:
示例代码
import torchfrom typing import Any, Listfrom pydantic import Extrafrom langchain.embeddings.base import Embeddingsfrom sentence_transformers import SentenceTransformerdevice = 'cpu'class CustomEmbedding(Embeddings):client: Any#: :meta private:tokenizer: Anycontext_sequence_length: int = 512query_sequence_length: int = 512model_name: str = ''"""Model name to use."""def __init__(self, **kwargs: Any):"""Initialize the sentence_transformer."""# super().__init__(**kwargs)self.client = SentenceTransformer('BAAI/bge-m3',device=device,trust_remote_code=True)self.context_sequence_length = 512self.query_sequence_length = 512class Config:extra = Extra.forbiddef mean_pooling(model_output, attention_mask):# First element of model_output contains all token embeddingstoken_embeddings = model_output[0]input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()return torch.sum(token_embeddings * input_mask_expanded, 1) / \torch.clamp(input_mask_expanded.sum(1), min=1e-9)def embed_documents(self, texts: List[str]) -> List[List[float]]:with torch.no_grad():embeddings = self.client.encode(texts)embeddings = embeddings.astype('float32')return embeddings.tolist()def embed_query(self, text: str) -> List[float]:return self.embed_documents([text])[0]# 使用测试model = CustomEmbedding()emb = model.embed_query("张三")print(len(emb))
正确运行后,输出的结果是1024,即代表query被向量化后的维数为1024维;可以用这个模型替换上篇文章中的OpenAIEmbeddings.
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21