微信扫码
添加专属顾问
我要投稿
在人工智能的迅猛发展浪潮中,语言模型的进化从未停歇。随着技术的不断突破,RAG(检索增强生成)技术以其独特的优势,正引领着一场关于知识获取和生成内容的革命。
随着ReST(检索到序列转换)技术的崛起,一个新的竞争者进入了人们的视野。这不仅是技术的较量,更是对未来智能对话系统发展方向的探索。
在这个充满变革的时代,我们不禁要问:RAG和ReST,这两种先进技术将如何塑造大型语言模型的未来?
它们在提升模型性能、增强知识获取能力以及优化生成内容方面,各自又有哪些独特的优势和挑战?
本文将深入探讨RAG到ReST的技术演进,揭示它们在大型语言模型开发中的应用和影响,同时探讨它们在实际应用中可能引发的争议和挑战。
@鲁班AI lab 梳理了下相关讯息,以供参考。
追逐AI的浪潮!文末附学习资料,赶快收藏,并分享给你的好友哦
Part 1
图片来源于网络
Part 2
Part 3
图片来源于网络
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
涌现观点|RAG评估的"不可能三角":当独角兽公司因AI评估失误损失10亿美元时,我们才意识到这个被忽视的技术死角
2025-08-29
RAG2.0进入“即插即用”时代!清华YAML+MCP让复杂RAG秒变“乐高”
2025-08-29
利用RAG构建智能问答平台实战经验分享
2025-08-29
RAG如七夕,鹊桥大工程:再看文档解析实际落地badcase
2025-08-29
基于智能体增强生成式检索(Agentic RAG)的流程知识提取技术研究
2025-08-29
RAG 为何能瞬间找到答案?向量数据库告诉你
2025-08-28
寻找RAG通往上下文工程之桥:生成式AI的双重基石重构
2025-08-28
万字长文详解优图RAG技术
2025-06-05
2025-06-06
2025-06-05
2025-06-05
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-06-05