微信扫码
添加专属顾问
我要投稿
01。
概述
一款利用检索增强生成(RAG)技术和LLaMA-3.1-8B即时大型语言模型(LLM)的个人助理工具。该工具旨在通过结合机器学习和基于检索的系统,彻底改变PDF文档分析任务。
02。
RAG架构的起源
03。
RAG 架构概述
04。
实现细节
05。
安装
!conda install -n pa \
pytorch \
torchvision \
torchaudio \
cpuonly \
-c pytorch \
-c conda-forge \
--yes
%pip install -U ipywidgets
%pip install -U requests
%pip install -U llama-index
%pip install -U llama-index-embeddings-huggingface
%pip install -U llama-index-llms-groq
%pip install -U groq
%pip install -U gradio
import os
import platform
import subprocess
import requests
def install_tesseract():
"""
Installs Tesseract OCR based on the operating system.
"""
os_name = platform.system()
if os_name == "Linux":
print("Detected Linux. Installing Tesseract using apt-get...")
subprocess.run(["sudo", "apt-get", "update"], check=True)
subprocess.run(["sudo", "apt-get", "install", "-y", "tesseract-ocr"], check=True)
elif os_name == "Darwin":
print("Detected macOS. Installing Tesseract using Homebrew...")
subprocess.run(["brew", "install", "tesseract"], check=True)
elif os_name == "Windows":
tesseract_installer_url = "https://github.com/UB-Mannheim/tesseract/releases/download/v5.4.0.20240606/tesseract-ocr-w64-setup-5.4.0.20240606.exe"
installer_path = "tesseract-ocr-w64-setup-5.4.0.20240606.exe"
response = requests.get(tesseract_installer_url)
with open(installer_path, "wb") as file:
file.write(response.content)
tesseract_path = r"C:\Program Files\Tesseract-OCR"
os.environ["PATH"] += os.pathsep + tesseract_path
try:
result = subprocess.run(["tesseract", "--version"], check=True, capture_output=True, text=True)
print(result.stdout)
except subprocess.CalledProcessError as e:
print(f"Error running Tesseract: {e}")
else:
print(f"Unsupported OS: {os_name}")
install_tesseract()
Convert PDF to OCR
import webbrowser
url = "https://www.ilovepdf.com/ocr-pdf"
webbrowser.open_new(url)
import os
from llama_index.core import (
Settings,
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.groq import Groq
import gradio as gr
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-09
告别新手级RAG!一文掌握专业级后检索优化流水线
2025-09-09
切块、清洗、烹饪:RAG知识库构建的三步曲
2025-09-09
终结 “闭卷考试”:RAG 如何从根源上构建可信的AI应用
2025-09-09
你的RAG应用为什么总“胡说八道”?这份21项优化自查清单,帮你根治AI幻觉
2025-09-08
万字长文详解腾讯优图RAG技术的架构设计与创新实践
2025-09-08
运用 Elasticsearch 进行向量搜索及创建 RAG 应用
2025-09-08
通过两个案例,看RAG如何解决大模型的“知识短板”
2025-09-06
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05
2025-07-28
2025-07-09