微信扫码
添加专属顾问
我要投稿
对应下来,离线部分就是基本操作+生成摘要
在线部分,传统的RAG流程,就只有红色的一条路径。然后多了一些模块,包括识别术语、确定上下文、查询术语字典、增强问题,最后就是检索文档,生成答案,提示词都在下边。
与LLM和普通的RAG方法相比,Golden-Retriever在多个LLM基座上平均提高了57.3%和35.0%的分数。而且,Golden-Retriever还能够有效地识别问题中的缩写,即使这些缩写是未知的。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-08
万字长文详解腾讯优图RAG技术的架构设计与创新实践
2025-09-08
运用 Elasticsearch 进行向量搜索及创建 RAG 应用
2025-09-08
通过两个案例,看RAG如何解决大模型的“知识短板”
2025-09-06
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
2025-09-05
别让你的RAG“吃”垃圾数据了!从源头构建高质量知识库的深度文档解析指南
2025-09-05
别再说你的RAG召回率不行,都怪你文档处理的太差——别拿文档处理是难点当借口
2025-09-05
【RAG的16种玩法】反馈闭环、自适应检索增强(中)
2025-09-04
在RAG文档处理中——怎么处理噪音问题
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05
2025-07-28
2025-07-09