微信扫码
添加专属顾问
我要投稿
pip install -U optimum[neural-compressor] intel-extension-for-transformers
def quantize(model_name: str, output_path: str, calibration_set: "datasets.Dataset"):
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def preprocess_function(examples):
return tokenizer(examples["text"], padding="max_length", max_length=512, truncation=True)
vectorized_ds = calibration_set.map(preprocess_function, num_proc=10)
vectorized_ds = vectorized_ds.remove_columns(["text"])
quantizer = INCQuantizer.from_pretrained(model)
quantization_config = PostTrainingQuantConfig(approach="static", backend="ipex", domain="nlp")
quantizer.quantize(
quantization_config=quantization_config,
calibration_dataset=vectorized_ds,
save_directory=output_path,
batch_size=1,
)
tokenizer.save_pretrained(output_path)
# 数据集地址https://huggingface.co/datasets/allenai/qasper
from optimum.intel import IPEXModelmodel = IPEXModel.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")
inputs = tokenizer(sentences, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# get the [CLS] token
embeddings = outputs[0][:, 0]
从上面的结果可以看出,通过量化后模型的延迟和吞吐量都有大幅提升。大家是不是学会的呢。下篇我们继续介绍一个相关工具,辅助我们高效管理RAG流程。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-09
告别新手级RAG!一文掌握专业级后检索优化流水线
2025-09-09
切块、清洗、烹饪:RAG知识库构建的三步曲
2025-09-09
终结 “闭卷考试”:RAG 如何从根源上构建可信的AI应用
2025-09-09
你的RAG应用为什么总“胡说八道”?这份21项优化自查清单,帮你根治AI幻觉
2025-09-08
万字长文详解腾讯优图RAG技术的架构设计与创新实践
2025-09-08
运用 Elasticsearch 进行向量搜索及创建 RAG 应用
2025-09-08
通过两个案例,看RAG如何解决大模型的“知识短板”
2025-09-06
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05
2025-07-28
2025-07-09