微信扫码
添加专属顾问
我要投稿
01。
概述
02。
RAG技术
过度依赖静态数据:应整合动态数据源并定期更新知识库。
忽视延迟优化:实施上下文内存缓存并优化检索算法。
跨模态对齐不佳:使用跨模态语义对齐技术确保数据一致性。
缺乏反馈循环:通过用户反馈持续优化系统。
单体架构的局限性:采用微服务架构提升可扩展性。
03。
结语
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-06
Zero-RAG,对冗余知识说“不”
2025-11-06
RFT目前(在应用层)仍然是被低估的
2025-11-05
从 RAG 到 Agentic RAG,再到 Agent Memory:AI 记忆的进化三部曲
2025-11-05
万字详解Naive RAG超进化之路:Pre-Retrieval和Retrieval优化
2025-11-05
别只调模型!RAG 检索优化真正该测的,是这三件事
2025-11-04
大模型生态的“不可能三角”:规模化应用的架构困境?
2025-10-31
Dify知识库从Demo到生产:RAG构建企业级私有知识库的7个关键步骤
2025-10-31
RAGFlow 深度介绍
2025-09-15
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-09-08
2025-08-20
2025-08-28
2025-11-04
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25