微信扫码
添加专属顾问
我要投稿
01
—
RAG的产品形态
随着RAG技术的发展和演变,RAG产生了Naive RAG、Advanced RAG、Modular RAG。
02
—
RAG产品建设路径
RAG整理业务链路划分为5个步骤:知识生产加工、query改写、数据召回、后置处理以及大模型生产;
03
—
结语
RAG问答系统搭建做出来比较容易,但想做好比较难的,流程中的每一个步骤都有可能对最终效果产生影响。在RAG中需要做大量的探索如不同文档的切分方式、query改写策略、数据如何找回等等。面向企业的知识更有很多难点需要解决,企业中有不同的部门,同一个部门有不同的角色,对应的知识的权限不同,以及还涉及到外部合作伙伴的权限,在不同的权限交互下,处理起来非常复杂。因此做好一个企业内部的RAG智能问答任重而道远。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-10-11
2025-10-04
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30