微信扫码
添加专属顾问
我要投稿
LLMs在处理长文本时,因为注意力机制二次时间和空间复杂度的问题,所以处理长文本时的内存消耗和计算成本有点恐怖。检索增强生成RAG自然就成了一个工业界成熟的解决方案,MemLong是一个新的解决方案,跟之前有些产品提到的RAG2.0有点类似(RAG 2.0有无数个版本~)。
整体上来看,他跟RAG的对比图如下,主要是通过存储过去的上下文和知识在一个记忆库中,利用这些存储的信息来检索(K-V and embedding pairs),来达到扩展了模型的上下文窗口的目的。
与标准语言建模目标相比,还会利用外部检索获取相关信息,并在模型的上层进行知识融合。
整体架构图如下
上层的注意力机制修改,将传统的多头注意力扩展到联合注意力机制,使每个token能够同时关注局部上下文和块级过去上下文
在多个长文本语言建模基准上进行了评估,显示出比其他最先进的LLMs更好的性能。它在单个GPU上能够将上下文长度从4k扩展到80k,大幅提高了模型在长文本任务中的性能。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-06
RAG 落地全干货深度分享:从“效果不理想”到生产级 RAG 系统的进化之路
2026-02-06
效率神器 Claude-Mem:终结 AI “金鱼记忆”!自动保存上下文、可视化记忆流,开发体验提升 10 倍!
2026-02-06
告别“伪智能”代码:用 Spec + RAG 打造真正懂你的AI程序员
2026-02-05
向量,向量化,向量数据库和向量计算
2026-02-05
从 RAG 到 Agentic Search,一次关于信任 AI 判断的认知升级
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21