微信扫码
添加专属顾问
我要投稿
LLMs在处理长文本时,因为注意力机制二次时间和空间复杂度的问题,所以处理长文本时的内存消耗和计算成本有点恐怖。检索增强生成RAG自然就成了一个工业界成熟的解决方案,MemLong是一个新的解决方案,跟之前有些产品提到的RAG2.0有点类似(RAG 2.0有无数个版本~)。
整体上来看,他跟RAG的对比图如下,主要是通过存储过去的上下文和知识在一个记忆库中,利用这些存储的信息来检索(K-V and embedding pairs),来达到扩展了模型的上下文窗口的目的。
与标准语言建模目标相比,还会利用外部检索获取相关信息,并在模型的上层进行知识融合。
整体架构图如下
上层的注意力机制修改,将传统的多头注意力扩展到联合注意力机制,使每个token能够同时关注局部上下文和块级过去上下文
在多个长文本语言建模基准上进行了评估,显示出比其他最先进的LLMs更好的性能。它在单个GPU上能够将上下文长度从4k扩展到80k,大幅提高了模型在长文本任务中的性能。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-10-11
2025-10-04
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30