微信扫码
添加专属顾问
我要投稿
预处理的作用是判断文档内容是否需要进行OCR识别,如果是普通可编辑的PDF文档,则使用PyMuPDF库提取元信息。
模型层除了常规的OCR、版面结构分析外,还有公式检测模型,可提取公式内容,用于后续把公式转化为Latex格式。但是目前暂无表格内容识别,官方预计1个月之内会放出。
管线层主要是把上面模型的结果进行加工处理。比如把公式转化为Latex格式、图表保存起来成为图片、把文本框进行排序和合并以及过滤掉无用的信息(页眉、页脚等)。
输出层其实就是结果文件夹中的内容。结果文件夹中有layout.pdf、span.pdf、xx_middle.json、xx_model.json、xx_content_list.json、xx.md、images文件夹。
• layout.pdf 可以看到 版面结构的识别结果
• span.pdf 可以看到具体每个文本框的内容
• xx_middle.json 是用OCR或者PDF库解析出的文档元信息,包含文本块类型、内容和坐标。
• xx_model.json 是版面分析结果的内容,包含文本块的类型、坐标和置信度。
• xx_content_list.json 中是文档的类型和具体内容,图表则用img_path指定存放的图片的路径。
创建一个python环境,建议python3.10以上
conda create -n MinerU python=3.10
conda activate MinerU
接着安装magic-pdf
和detectron2
这个包
pip install magic-pdf[full-cpu]
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
magic-pdf --version
注意查看版本是否在0.6.x以上,否则会有问题。英特尔芯片的Mac电脑由于某些库的依赖原因,只能到0.5.x的版本。对于M系列的芯片,经过实测发现不支持mps加速,还是只能使用CPU。
接着下载模型权重:https://huggingface.co/wanderkid/PDF-Extract-Kit
接着把该仓库中的magic-pdf.template.json
文件拷贝到本地,修改models-dir
为下载到本地的模型路径。
{
"models-dir": "/tmp/models"
}
需要注意的是这个路径是绝对路径
• 比较准确。从上面的图可以看出,无论是可编辑的PDF还是扫描版的PDF,都能非常好的区分出版面中不同类型的部分,而且最终的结果是以Markdown的格式保存的,可以很容易把不同章节、不同自然段按需进行切分。
• 硬件支持不够完善,目前存在很多不兼容的情况。M系列芯片暂时无法解决Bug,GPU未测过是否存在其他问题。而用CPU实在是太慢了,10几页的PDF就需要处理约5分钟。
• 版面结构进行排序和组合貌似用的全是自定义的规则函数,不太方便开发者进行复用或者微调。
• 表格内容暂时无法识别。目前只能把表格部分提取为图片保存起来。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-09-10
您应该为您的 RAG 系统使用哪种分块技术?
2025-09-10
关于多模态应用的几个疑问,以及多模态应该怎么应用于RAG?
2025-09-10
MiniMax RAG 技术:从推理、记忆到多模态的演进与优化
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05