微信扫码
添加专属顾问
我要投稿
论文链接: https://arxiv.org/abs/2409.05591
代码地址:https://github.com/qhjqhj00/MemoRAG
MemoRAG区别于传统RAG系统,它通过引入记忆模块实现对数据库的全局理解,并回忆与查询相关的线索,从而提升检索的准确性和上下文丰富度。这一设计显著增强了MemoRAG在处理复杂任务、模糊信息需求以及非结构化知识时的表现,展示了在处理复杂推理和长文档任务中的巨大潜力,适用于多领域的实际应用
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-06
RAG已经过时了?试试CAG,缓存增强生成技术实战大揭秘!
2025-11-06
Zero-RAG,对冗余知识说“不”
2025-11-06
RFT目前(在应用层)仍然是被低估的
2025-11-05
从 RAG 到 Agentic RAG,再到 Agent Memory:AI 记忆的进化三部曲
2025-11-05
万字详解Naive RAG超进化之路:Pre-Retrieval和Retrieval优化
2025-11-05
别只调模型!RAG 检索优化真正该测的,是这三件事
2025-11-04
大模型生态的“不可能三角”:规模化应用的架构困境?
2025-10-31
Dify知识库从Demo到生产:RAG构建企业级私有知识库的7个关键步骤
2025-09-15
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-09-08
2025-08-20
2025-08-28
2025-11-04
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25