微信扫码
添加专属顾问
我要投稿
在人工智能领域,垂直领域的挑战不断催生新的技术解决方案。RAG是一种结合检索和生成的深度学习模型,它通过检索大量相关文档,然后基于这些文档生成回答,从而提高回答的准确性和相关性。
然而,直接使用大型预训练模型来应对这些挑战并非没有问题。
为了解决这些问题,许多企业开始转向利用自身的知识库。企业内部的文档、业务数据和经营数据是宝贵的资源,它们提供了更准确、更安全的知识来源。通过将这些内部数据与RAG模型相结合,企业可以生成更符合自身需求和标准的高质量回答。
Retrieval-Augmented Generation(RAG)是一种先进的人工智能技术,它通过将检索结果与大型语言模型(LLM)结合,引导模型生成更加精准和可靠的答案。RAG的核心在于其能够实时更新知识库,而无需对模型进行重新训练,这大大提升了知识获取的时效性和灵活性。
RAG的三大优势
在某些关键场景中,如医疗咨询或法律服务,对答案的准确度要求极高,几乎需要达到“100%准确”。为此,RAG技术需要做到:
在快节奏的查询环境中,用户期望在1到3秒内获得答案。这要求RAG技术具备:
RAG技术的一个主要成本是GPU资源的消耗,特别是在训练和推理阶段。为了降低成本,需要:
在处理用户数据时,RAG技术必须严格遵守隐私和安全性的要求:
文本切片是将文档分割成更小的、易于处理和检索的部分。以下是几种不同的切片方法:
在RAG中,VectorStore扮演着关键角色,它用于存储和检索向量化的数据。HNSW是一种用于高效近似最近邻搜索的图算法。它构建了一个分层的图结构,每一层都具有不同的搜索精度和效率。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30