微信扫码
添加专属顾问
我要投稿
LlamaParse[1] 是一个专为生成式人工智能(GenAI)设计的文档解析器,能够解析复杂的文档数据,以适应任何下游大型语言模型(LLM)的使用场景,如检索增强生成(RAG)或智能代理。
它能够解析多种复杂的文件类型,包括 PDF、PPTX、DOCX、XLSX 和 HTML,并且支持表格识别、多模态解析和自定义解析。
pip install llama-parse
命令安装 LlamaParse 包。import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse
parser = LlamaParse(
api_key="llx-...", # 也可以设置环境变量 LLAMA_CLOUD_API_KEY
result_type="markdown", # 可选 "markdown" 和 "text"
num_workers=4, # 如果上传多个文件,将分成 `num_workers` 个 API 调用
verbose=True,
language="en", # 可选定义语言,默认为英文
)
# 同步解析单个文件
documents = parser.load_data("./my_file.pdf")
# 同步批量解析
documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"])
# 异步解析单个文件
documents = await parser.aload_data("./my_file.pdf")
# 异步批量解析
documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"])
注:本文内容仅供参考,具体项目特性请参照官方 GitHub 页面的最新说明。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-09-10
您应该为您的 RAG 系统使用哪种分块技术?
2025-09-10
关于多模态应用的几个疑问,以及多模态应该怎么应用于RAG?
2025-09-10
MiniMax RAG 技术:从推理、记忆到多模态的演进与优化
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05