微信扫码
添加专属顾问
我要投稿
在RAG的时候,再好的recall + rerank + 筛选策略,都会出现知识冲突,或query无关的候选知识的情况。文中称这种现象为“不完美检索”。
通常,当检索精度不低于 20%时,RAG 是有帮助的。当检索精度接近 0 时,带有 RAG 的模型的表现要比没有 RAG 的模型差。添加更多的检索段落并不一定导致更好的性能,因为额外的段落可能会降低检索精度。
核心流程如下图,分为3大步:
其中步骤2可以迭代多次。总体上可以获得不错的提升。
一个示例如下:图片wx翻译
3个步骤都是prompt来完成,wx图片翻译的prompt如下,仅供参考
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-06
RAG 落地全干货深度分享:从“效果不理想”到生产级 RAG 系统的进化之路
2026-02-06
效率神器 Claude-Mem:终结 AI “金鱼记忆”!自动保存上下文、可视化记忆流,开发体验提升 10 倍!
2026-02-06
告别“伪智能”代码:用 Spec + RAG 打造真正懂你的AI程序员
2026-02-05
向量,向量化,向量数据库和向量计算
2026-02-05
从 RAG 到 Agentic Search,一次关于信任 AI 判断的认知升级
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2026-01-02
2025-12-07
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21