微信扫码
添加专属顾问
我要投稿
使用GraphRAG提升信息检索相关性。
GraphRAG是传统RAG的升级版,通过索引和查询两大阶段,实现了信息的图结构化处理和社区检测技术,从而提升信息检索的上下文相关性。本文为大家详细介绍GraphRAG的设置和应用方法。
GraphRAG 是传统 RAG 的升级版,主要分为索引和查询两个阶段:
索引阶段:
查询阶段:
GraphRAG 的创新在于利用图结构化信息和社区检测技术,提升回答的上下文相关性,但其计算成本要高于传统 RAG,后者在成本效益上仍有优势。
conda create -n GraphRAG
conda activate GraphRAG
pip install graphrag
ragtest/input 文件夹。input 文件夹。python -m graphrag.index --init --root ./target
在 settings.yml 中设置 OpenAI API 密钥和模型配置。
python -m graphrag.index --init --root ./target
python -m graphrag.query --root ./target --method global "这个故事的主题是什么"
python -m graphrag.query --root ./target --method local "这个故事的主题是什么"
通过以上步骤,可设置并使用 GraphRAG 进行有效的信息检索。
测试结果显示,GraphRAG处理每本书的费用约为7美元,主要包括:
这些数据可作为评估GraphRAG性价比的参考。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-06
RAG 落地全干货深度分享:从“效果不理想”到生产级 RAG 系统的进化之路
2026-02-06
效率神器 Claude-Mem:终结 AI “金鱼记忆”!自动保存上下文、可视化记忆流,开发体验提升 10 倍!
2026-02-06
告别“伪智能”代码:用 Spec + RAG 打造真正懂你的AI程序员
2026-02-05
向量,向量化,向量数据库和向量计算
2026-02-05
从 RAG 到 Agentic Search,一次关于信任 AI 判断的认知升级
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2026-01-02
2025-12-07
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21