微信扫码
添加专属顾问
我要投稿
可解释和可调试的知识:图表提供了可查询、可视化和更新的知识的人类可导航视图。
快速、低成本、高效:设计用于大规模运行而不需要大量资源或成本要求。
动态数据:自动生成和优化图表以最适合您的领域和本体需求。
增量更新:支持数据变化时的实时更新。
智能探索:利用基于 PageRank 的图形探索来提高准确性和可靠性。
异步和类型化:完全异步,并具有完整的类型支持,以实现强大且可预测的工作流程。
export OPENAI_API_KEY="sk-..."
curl https://raw.githubusercontent.com/circlemind-ai/fast-graphrag/refs/heads/main/mock_data.txt > ./book.tx
from fast_graphrag import GraphRAGDOMAIN = "Analyze this story and identify the characters. Focus on how they interact with each other, the locations they explore, and their relationships."EXAMPLE_QUERIES = ["What is the significance of Christmas Eve in A Christmas Carol?","How does the setting of Victorian London contribute to the story's themes?","Describe the chain of events that leads to Scrooge's transformation.","How does Dickens use the different spirits (Past, Present, and Future) to guide Scrooge?","Why does Dickens choose to divide the story into \"staves\" rather than chapters?"]ENTITY_TYPES = ["Character", "Animal", "Place", "Object", "Activty", "Event"]grag = GraphRAG(working_dir="./book_example",domain=DOMAIN,example_queries="\n".join(EXAMPLE_QUERIES),entity_types=ENTITY_TYPES)with open("./book.txt") as f:grag.insert(f.read())print(grag.query("Who is Scrooge?").response)
https://github.com/circlemind-ai/fast-graphrag
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-06
RAG已经过时了?试试CAG,缓存增强生成技术实战大揭秘!
2025-11-06
Zero-RAG,对冗余知识说“不”
2025-11-06
RFT目前(在应用层)仍然是被低估的
2025-11-05
从 RAG 到 Agentic RAG,再到 Agent Memory:AI 记忆的进化三部曲
2025-11-05
万字详解Naive RAG超进化之路:Pre-Retrieval和Retrieval优化
2025-11-05
别只调模型!RAG 检索优化真正该测的,是这三件事
2025-11-04
大模型生态的“不可能三角”:规模化应用的架构困境?
2025-10-31
Dify知识库从Demo到生产:RAG构建企业级私有知识库的7个关键步骤
2025-09-15
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-09-08
2025-08-20
2025-08-28
2025-11-04
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25