微信扫码
添加专属顾问
我要投稿
可解释和可调试的知识:图表提供了可查询、可视化和更新的知识的人类可导航视图。
快速、低成本、高效:设计用于大规模运行而不需要大量资源或成本要求。
动态数据:自动生成和优化图表以最适合您的领域和本体需求。
增量更新:支持数据变化时的实时更新。
智能探索:利用基于 PageRank 的图形探索来提高准确性和可靠性。
异步和类型化:完全异步,并具有完整的类型支持,以实现强大且可预测的工作流程。
export OPENAI_API_KEY="sk-..."
curl https://raw.githubusercontent.com/circlemind-ai/fast-graphrag/refs/heads/main/mock_data.txt > ./book.tx
from fast_graphrag import GraphRAGDOMAIN = "Analyze this story and identify the characters. Focus on how they interact with each other, the locations they explore, and their relationships."EXAMPLE_QUERIES = ["What is the significance of Christmas Eve in A Christmas Carol?","How does the setting of Victorian London contribute to the story's themes?","Describe the chain of events that leads to Scrooge's transformation.","How does Dickens use the different spirits (Past, Present, and Future) to guide Scrooge?","Why does Dickens choose to divide the story into \"staves\" rather than chapters?"]ENTITY_TYPES = ["Character", "Animal", "Place", "Object", "Activty", "Event"]grag = GraphRAG(working_dir="./book_example",domain=DOMAIN,example_queries="\n".join(EXAMPLE_QUERIES),entity_types=ENTITY_TYPES)with open("./book.txt") as f:grag.insert(f.read())print(grag.query("Who is Scrooge?").response)
https://github.com/circlemind-ai/fast-graphrag
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-06
RAG 落地全干货深度分享:从“效果不理想”到生产级 RAG 系统的进化之路
2026-02-06
效率神器 Claude-Mem:终结 AI “金鱼记忆”!自动保存上下文、可视化记忆流,开发体验提升 10 倍!
2026-02-06
告别“伪智能”代码:用 Spec + RAG 打造真正懂你的AI程序员
2026-02-05
向量,向量化,向量数据库和向量计算
2026-02-05
从 RAG 到 Agentic Search,一次关于信任 AI 判断的认知升级
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2026-01-02
2025-12-07
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21