微信扫码
添加专属顾问
我要投稿
今天分享的是解决检索增强生成系统中预检索信息差距的一个方法:ERRR。
论文链接: https://arxiv.org/pdf/2411.07820v1
01
简介
02
框架
ERRR 的整体框架如上图 (iii) 所示,其主要由参数知识提取 (Parametric Knowledge Extraction)、查询优化 (Query Optimization)、检索 (Retrieval) 和生成 (Generation) 这四部分组成。下面详细介绍每一组成部分。
方法:使用直接提示,让LLM生成包含与原始查询相关的背景信息的伪上下文文档。
本地密集检索系统: 例如 Dense Passage Retrieval (DPR)。
目标:使用LLM根据检索到的文档和原始查询生成最终答案。
03
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-22
Uber 如何利用 OpenSearch 实现十亿级向量搜索
2025-12-22
别让大模型在“垃圾堆”里找金子:深度解析 RAG 的上下文压缩技术
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-10-11
2025-10-04
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30