微信扫码
添加专属顾问
我要投稿
今天分享的是解决检索增强生成系统中预检索信息差距的一个方法:ERRR。
论文链接: https://arxiv.org/pdf/2411.07820v1
01
简介
02
框架
ERRR 的整体框架如上图 (iii) 所示,其主要由参数知识提取 (Parametric Knowledge Extraction)、查询优化 (Query Optimization)、检索 (Retrieval) 和生成 (Generation) 这四部分组成。下面详细介绍每一组成部分。
方法:使用直接提示,让LLM生成包含与原始查询相关的背景信息的伪上下文文档。
本地密集检索系统: 例如 Dense Passage Retrieval (DPR)。
目标:使用LLM根据检索到的文档和原始查询生成最终答案。
03
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-09-10
您应该为您的 RAG 系统使用哪种分块技术?
2025-09-10
关于多模态应用的几个疑问,以及多模态应该怎么应用于RAG?
2025-09-10
MiniMax RAG 技术:从推理、记忆到多模态的演进与优化
2025-09-09
告别新手级RAG!一文掌握专业级后检索优化流水线
2025-09-09
切块、清洗、烹饪:RAG知识库构建的三步曲
2025-09-09
终结 “闭卷考试”:RAG 如何从根源上构建可信的AI应用
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05