微信扫码
添加专属顾问
我要投稿
OHRBench的构建与评估协议。(1) 基准数据集:从六个领域收集PDF文档,提取经过人工验证的地面真实结构化数据,并从多模态文档元素生成问答。(2) RAG知识库:用于基准测试当前OCR解决方案的OCR处理结构化数据,以及用于评估不同OCR噪声类型影响的扰动结构化数据。(3) 评估OCR对每个组件以及整个RAG系统的影响。
https://github.com/opendatalab/OHR-BenchOCR Hinders RAG: Evaluating the Cascading Impact of OCR on Retrieval-Augmented Generationhttps://arxiv.org/pdf/2412.02592
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10