微信扫码
添加专属顾问
我要投稿
| 特性 | RAG | 微调 (Fine-tuning) |
|---|---|---|
| 实现难度 | 较低:无需修改模型,只需构建检索和数据管道 | 较高:需要训练大模型并可能增加计算成本 |
| 数据更新 | 实时更新:数据变化无需重新训练 | 需要重新训练或微调模型 |
| 灵活性 | 高:可动态适配不同任务和领域 | 较低:适合特定任务或领域的模型 |
| 成本 | 较低:无需高性能硬件即可运行 | 较高:训练过程耗费大量计算资源 |
| 生成质量 | 中等:依赖于检索系统的性能 | 较高:通过定制化训练生成更精准的答案 |
| 适用场景 | 数据快速变动、跨领域任务 | 固定领域、需要高精度回答的场景 |
| 挑战 | 检索相关性、幻觉现象(Hallucination) | 训练数据需求大、可能存在灾难性遗忘(Catastrophic Forgetting) |
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-06
效率神器 Claude-Mem:终结 AI “金鱼记忆”!自动保存上下文、可视化记忆流,开发体验提升 10 倍!
2026-02-06
告别“伪智能”代码:用 Spec + RAG 打造真正懂你的AI程序员
2026-02-05
向量,向量化,向量数据库和向量计算
2026-02-05
从 RAG 到 Agentic Search,一次关于信任 AI 判断的认知升级
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21