微信扫码
添加专属顾问
我要投稿
| 特性 | RAG | 微调 (Fine-tuning) |
|---|---|---|
| 实现难度 | 较低:无需修改模型,只需构建检索和数据管道 | 较高:需要训练大模型并可能增加计算成本 |
| 数据更新 | 实时更新:数据变化无需重新训练 | 需要重新训练或微调模型 |
| 灵活性 | 高:可动态适配不同任务和领域 | 较低:适合特定任务或领域的模型 |
| 成本 | 较低:无需高性能硬件即可运行 | 较高:训练过程耗费大量计算资源 |
| 生成质量 | 中等:依赖于检索系统的性能 | 较高:通过定制化训练生成更精准的答案 |
| 适用场景 | 数据快速变动、跨领域任务 | 固定领域、需要高精度回答的场景 |
| 挑战 | 检索相关性、幻觉现象(Hallucination) | 训练数据需求大、可能存在灾难性遗忘(Catastrophic Forgetting) |
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-21
终于,NotebookLM 和 Gemini 合体了。这是什么神之更新?
2025-12-21
Cohere 推出 Rerank 4,将上下文窗口从 8K 扩展至 32K,以交叉编码器架构强化长文档语义理解与跨段落关联捕捉
2025-12-21
4.1K Star!GitHub 上挖到一个救星级别的 RAG 数据流水线项目!
2025-12-20
PageIndex:一种基于推理的 RAG 框架
2025-12-20
深度解析丨智能体架构,利用文件系统重塑上下文工程
2025-12-20
RAG 答非所问?可能是你少了这一步:深度解析 Rerank 与 Cross-Encoder 的“降维打击”
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30