微信扫码
添加专属顾问
我要投稿
探索AI搜索产品从无到有的实践之路,揭秘知乎直答背后的技术逻辑和优化策略。 核心内容: 1. 知乎直答产品特性及优势分析 2. 检索增强生成框架RAG的应用与优化 3. Query理解和多策略召回方案的实践分享
导读 本文将介绍#知乎 直答产品搭建过程中的实践经验。
1. 知乎直答产品介绍
2. 实践经验分享
3. 直答专业版介绍
分享嘉宾|王界武知乎AI 算法负责人
编辑整理|蔡郁婕
内容校对|李瑶
出品社区|DataFun
知乎直答产品介绍
实践经验分享
1. 检索增强生成(RAG)框架
2. Query 理解相关实践
3. 召回方案
4. Chunk 相关实践
5. Rerank 相关经验
6. Generation 相关经验
7. 评估机制
8. 工程优化和成本控制
直答专业版介绍
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21