微信扫码
添加专属顾问
我要投稿
谷歌最新研究揭示企业RAG系统失败原因,并提出“充足上下文”解决方案,助力提升AI应用可靠性。 核心内容: 1. 谷歌研究提出“充足上下文”框架,解决RAG系统准确性问题 2. RAG系统常见缺陷:易受无关信息干扰,长文本处理困难 3. 通过分类上下文充足性,无需依赖真实答案,实现高效问题回答
谷歌研究人员最新研究提出"充足上下文"框架,为理解和改进大语言模型(LLMs)中的检索增强生成(RAG)系统提供了新视角。该方案能精准判定模型是否具备足够信息来准确响应查询,对于构建企业级应用至关重要-这类场景中系统的可靠性与事实准确性具有最高优先级。
RAG系统的持续挑
充足的上下文(Sufficient context)
RAG系统中大语言模型(LLM)行为的关键发现
降低RAG系统中的幻觉现象
将"充足上下文"应用于实际RAG系统
— END —
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
涌现观点|RAG评估的"不可能三角":当独角兽公司因AI评估失误损失10亿美元时,我们才意识到这个被忽视的技术死角
2025-08-29
RAG2.0进入“即插即用”时代!清华YAML+MCP让复杂RAG秒变“乐高”
2025-08-29
利用RAG构建智能问答平台实战经验分享
2025-08-29
RAG如七夕,鹊桥大工程:再看文档解析实际落地badcase
2025-08-29
基于智能体增强生成式检索(Agentic RAG)的流程知识提取技术研究
2025-08-29
RAG 为何能瞬间找到答案?向量数据库告诉你
2025-08-28
寻找RAG通往上下文工程之桥:生成式AI的双重基石重构
2025-08-28
万字长文详解优图RAG技术
2025-06-05
2025-06-06
2025-06-05
2025-06-05
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-06-05