微信扫码
添加专属顾问
我要投稿
提升AI问答准确率的新策略,RAR技术揭示了检索和推理的结合之道。 核心内容: 1. RAG技术中常被忽视的RAR方法及其重要性 2. 传统检索方法的局限性与RAR技术的优势对比 3. RAR在多源异构知识库和复杂问题解决中的应用场景
在RAG(检索增强生成)落地的过程中,存在一个效果显著,却常被忽视的技术方法 —— RAR
“最近极客公园报道了哪些关于具身智能的初创公司”
“某型号设备在Q3华东区的具体销量”
“为什么上季度的产品的退货率突然升高?可能受哪些因素影响?”(需要分析退货记录、客户反馈、物流数据等多方信息,推断原因链)“基于当前市场趋势和库存水平,应该优先推广哪款产品?”(需要综合市场报告、库存数据、产品利润等信息进行决策分析)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10