微信扫码
添加专属顾问
我要投稿
Function Calling与RAG技术强强联合,打造能实时响应、个性化服务的智能客服系统,彻底改变传统客服体验。 核心内容: 1. Function Calling如何弥补RAG在实时数据查询上的短板 2. 智能客服系统的完整实现流程与核心模块解析 3. 金融场景中两种技术的协同应用与价值提升
RAG赋予大模型访问私有知识库的能力,而Function Calling则使其能够读取和写入数据库。这两种能力的协同作用,将使智能客服变得更加智能、高效和个性化。
RAG虽然解决了知识覆盖问题,但对于动态且针对用户的业务数据(如订单状态、产品库存、账户余额)仍然无能为力。Function Calling机制通过调用数据库查询接口,实现查询用户的实时数据,弥补了RAG的短板,将检索增强系统升级成为智能客服。
训练小模型进行用户意图识别(是否启用function calling函数调用、调用哪一组函数);
使用大模型的function calling功能,对函数调用的参数自动填充,也可以根据用户登录信息自动填充用户名等基础信息
将函数的调用结果反馈给大模型,并调用大模型后端API流式输出内容给用户。
知识库管理(文档、FAQ、SOP、制度等);
数据库接入(查询预编写好的业务数据函数);
Function定义与统一管理(支持动态扩展);
流式输出大模型结果到客服界面
金融客服场景中的应用:
在金融客服场景中,Function Calling 技术与 RAG 技术可以形成互补,例如,当用户咨询“我的账户余额是多少”时,系统首先通过意图识别判断这是一个涉及用户私人数据的请求。此时,RAG 技术无法提供实时答案,系统便触发 Function Calling,调用银行核心账户系统接口,返回该用户的最新余额信息。
而在理财产品推荐场景中,RAG 技术可以从企业内部知识库中召回不同类型的理财产品介绍、风险说明、历史收益表现等文本内容,为用户提供全面的产品背景信息。随后,系统通过 Function Calling 结合用户的风险承受能力、账户余额、历史购买记录等实时数据,筛选出最适合该用户的具体理财产品,并给出个性化推荐建议。RAG 解决“产品有哪些”的问题,Function Calling 解决“推荐给这个用户什么”这一实时问题。
这种 RAG 与 Function Calling 的协作模式,两者结合能提升服务的智能化、个性化与合规性,适用范围较广。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10