微信扫码
添加专属顾问
 
                        我要投稿
RAG检索效果不佳?可能是文本切分方式出了问题!本文揭秘语义切分技术如何让AI检索更精准。 核心内容: 1. 传统定长切分的弊端与语义切分的优势 2. 语义切分的三大算法实现原理 3. 从PDF提取到语义切分的完整代码实践
 
                                你是不是也遇到过这种尴尬:明明知识库里啥都有,AI一问三不知,检索出来的内容不是驴唇不对马嘴,就是答非所问?别怀疑,问题很可能就出在“切块”这一步!
今天,我就带你从头到尾,手把手撸一遍语义切分的全流程,让你的RAG系统从“东拼西凑”进化到“对答如流”!
传统的文本切分方法,最常见的就是定长切分:比如每隔500个字符、100个词,或者10句话就切一刀。听起来很科学,实际上很“机械”——
举个栗子:
❝“小明喜欢吃苹果。他每天早上都吃一个。苹果富含维生素C。深度学习是一种人工智能方法。”
你看,前面三句聊的是苹果,最后一句突然AI上身。定长切分可能把“苹果”和“深度学习”硬塞一块,AI检索时一脸懵逼:你到底问的是水果还是算法?
所以,定长切分的“原罪”就是——不懂内容!
语义切分,顾名思义,就是根据内容的“相似度”来切块。它的核心思想是:
这样,AI在检索时,拿到的都是“主题明确”的内容块,回答自然更靠谱!
要实现语义切分,关键是找到“切点”。怎么找?主流有三种方法,都是基于“相邻句子的相似度”:
一句话总结:都是在找“语义跳变”的地方下刀!
首先,得有“原材料”。假设你有一本AI教材的PDF,咱用PyMuPDF一把梭:
import fitz
def extract_text_from_pdf(pdf_path):
    mypdf = fitz.open(pdf_path)
    all_text = ""
    for page in mypdf:
        all_text += page.get_text("text") + " "
    return all_text.strip()
pdf_path = "data/AI_Information.pdf"
extracted_text = extract_text_from_pdf(pdf_path)
print(extracted_text[:500])  # 预览前500字符
有了文本,下一步就是“分句”,然后用大模型(比如OpenAI、BAAI/bge等)生成每句话的向量(embedding):
from openai import OpenAI
import numpy as np
import os
client = OpenAI(
    base_url="https://api.studio.nebius.com/v1/",
    api_key=os.getenv("OPENAI_API_KEY")
)
def get_embedding(text, model="BAAI/bge-en-icl"):
    response = client.embeddings.create(model=model, input=text)
    return np.array(response.data[0].embedding)
sentences = extracted_text.split(". ")
embeddings = [get_embedding(sentence) for sentence in sentences]
print(f"Generated {len(embeddings)} sentence embeddings.")
用余弦相似度衡量每对相邻句子的“亲密度”:
def cosine_similarity(vec1, vec2):
    return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
similarities = [cosine_similarity(embeddings[i], embeddings[i + 1]) for i in range(len(embeddings) - 1)]
def compute_breakpoints(similarities, method="percentile", threshold=90):
    if method == "percentile":
        threshold_value = np.percentile(similarities, threshold)
    # ... 省略其他方法
    return [i for i, sim in enumerate(similarities) if sim < threshold_value]
breakpoints = compute_breakpoints(similarities, method="percentile", threshold=90)
def split_into_chunks(sentences, breakpoints):
    chunks = []
    start = 0
    for bp in breakpoints:
        chunks.append(". ".join(sentences[start:bp + 1]) + ".")
        start = bp + 1
    chunks.append(". ".join(sentences[start:]))
    return chunks
text_chunks = split_into_chunks(sentences, breakpoints)
print(f"Number of semantic chunks: {len(text_chunks)}")
print("\nFirst text chunk:\n", text_chunks[0])
每个块再生成一个embedding,检索时直接比对块向量:
def create_embeddings(text_chunks):
    return [get_embedding(chunk) for chunk in text_chunks]
chunk_embeddings = create_embeddings(text_chunks)
def semantic_search(query, text_chunks, chunk_embeddings, k=5):
    query_embedding = get_embedding(query)
    similarities = [cosine_similarity(query_embedding, emb) for emb in chunk_embeddings]
    top_indices = np.argsort(similarities)[-k:][::-1]
    return [text_chunks[i] for i in top_indices]
假设你有如下问题:
❝“什么是可解释AI(Explainable AI),为什么它很重要?”
用上面的方法,检索出来的块内容大致如下:
Context 1:
Explainable AI (XAI) aims to make AI systems more transparent and understandable. Research in XAI focuses on developing methods for explaining AI decisions, enhancing trust, and improving accountability.
========================================
Context 2:
Transparency and explainability are essential for building trust in AI systems. Explainable AI (XAI) techniques aim to make AI decisions more understandable, enabling users to assess their fairness and accuracy.
========================================
然后,用大模型生成答案,并且严格要求只根据检索到的内容作答:
system_prompt = "You are an AI assistant that strictly answers based on the given context. If the answer cannot be derived directly from the provided context, respond with: 'I do not have enough information to answer that.'"
user_prompt = "\n".join([f"Context {i + 1}:\n{chunk}\n=====================================\n" for i, chunk in enumerate(top_chunks)])
user_prompt = f"{user_prompt}\nQuestion: {query}"
ai_response = generate_response(system_prompt, user_prompt)
print(ai_response.choices[0].message.content)
最后,别忘了用AI自动评测答案质量,闭环优化:
evaluate_system_prompt = "You are an intelligent evaluation system tasked with assessing the AI assistant's responses. If the AI assistant's response is very close to the true response, assign a score of 1. If the response is incorrect or unsatisfactory in relation to the true response, assign a score of 0. If the response is partially aligned with the true response, assign a score of 0.5."
evaluation_prompt = f"User Query: {query}\nAI Response:\n{ai_response.choices[0].message.content}\nTrue Response: {data[0]['ideal_answer']}\n{evaluate_system_prompt}"
evaluation_response = generate_response(evaluate_system_prompt, evaluation_prompt)
print(evaluation_response.choices[0].message.content)
.split(". "),中文建议用snownlp、jieba等分句工具,别让AI“断句失误”。bge、text-embedding-ada-002等主流模型。语义切分,说白了就是让AI“按内容分块”,而不是“按长度分尸”。它是RAG系统“检索-生成”闭环的关键一环,直接决定了AI的“知识召回率”和“答题准确率”。
一句话,想让你的AI像“懂王”一样,问啥都能答到点子上?先把语义切分练到极致!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
 
            2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20