微信扫码
添加专属顾问
我要投稿
探索HiRAG如何通过层级化知识索引与检索,解决RAG在语义关联和知识连贯性上的关键挑战。 核心内容: 1. 现有RAG方法的两大核心问题:语义相似实体结构距离远与局部-全局知识割裂 2. HiRAG的创新架构:层级化知识索引(HiIndex)与三层检索机制(HiRetrieval) 3. 通过社区检测和动态停止机制实现的多层级知识图谱构建方法
现有基于知识图谱(KG)的检索增强生成(RAG)方法在处理领域特定任务时存在两大关键挑战:
为此,本文提出HiRAG(Hierarchical Knowledge-based RAG)框架,通过整合层级化知识,增强RAG在索引和检索阶段的语义理解与结构捕捉能力,解决上述挑战。
HiRAG由HiIndex(层级化索引)和HiRetrieval(层级化检索)两个核心模块构成,流程如下:
层级化知识图谱构建:
三层知识检索:
HiRAG通过层级化知识索引与检索,有效解决了现有RAG中语义相似实体连接弱、局部-全局知识割裂的问题,在复杂推理任务中表现优异。其核心价值在于利用层级结构增强知识的语义关联,并通过桥接机制确保知识的连贯性,为领域特定场景下的RAG应用提供了新范式
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10