微信扫码
添加专属顾问
我要投稿
(ACL 2022 outstanding paper)
1.1 太长不看版
样本顺序影响结果
1.2 仔细说明版
样本顺序指的是在训练机器学习模型时,输入样本的排列方式。在大多数传统的监督学习场景中,模型会被训练在大量标记好的数据上,样本的顺序通常被认为是无关紧要的,因为模型通过梯度下降等优化算法学习数据中的模式,理论上不会受到样本顺序的影响。
然而,在**少量样本学习(few-shot learning)或上下文学习(in-context learning)**的设置中,样本顺序变得非常重要。在这些设置中,模型不是通过梯度下降来调整参数,而是通过观察少量的示例来生成预测。这些示例被用作上下文或提示(prompts),直接引导模型对新的输入做出反应。因此,即使是相同的几个样本,如果它们的顺序不同,也可能导致模型做出完全不同的预测。
例如,假设我们有一个分类任务,需要模型识别文本的情感倾向(积极或消极)。如果我们提供给模型两个示例:一个积极和一个消极的评论,那么这两个示例的顺序可能会影响模型对新评论情感的判断。如果模型先看到消极的评论,它可能会对后续的评论倾向于预测消极的结果,反之亦然。
论文中,作者们通过实验发现,在少量样本学习中,样本顺序会让预训练语言模型的性能在SOTA和随机猜之间波动。他们进一步提出了一种方法,通过构建人工开发集并使用熵统计量来识别出性能较好的样本顺序,也即构建更好的prompt,从而提高了模型的预测准确性和鲁棒性
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-05
Skills 怎么帮企业 AI 转型?Claude 能力拆解(二)
2026-02-05
未来对本地运行的私有模型的需求会日益增长 | Sam Altman最新对话实录
2026-02-05
Codex 振臂一呼,众厂商热血响应: Skills 目录即将实现大一统,可惜 Claude Code 没有回应
2026-02-05
OpenCSG 正式发布 OpenClaw × AgenticHub 企业级 OPC 平台
2026-02-05
Claude Code vs. OpenAI Codex为什么更慢的模型,反而更快把事情做完
2026-02-04
Skills使用体验
2026-02-04
AgentScope 正式发布 Skills 支持 - 实现渐进式披露
2026-02-04
从“回答者”进化为“研究员”:全面解析 Deep Research
2026-01-24
2026-01-10
2025-11-19
2025-11-13
2026-01-26
2026-01-01
2025-12-09
2025-11-12
2026-01-09
2025-12-21
2026-02-04
2026-02-03
2026-02-03
2026-02-02
2026-02-02
2026-02-02
2026-01-31
2026-01-30